114 resultados para Invariant subspaces
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chaotic dynamical systems with two or more attractors lying on invariant subspaces may, provided certain mathematical conditions are fulfilled, exhibit intermingled basins of attraction: Each basin is riddled with holes belonging to basins of the other attractors. In order to investigate the occurrence of such phenomenon in dynamical systems of ecological interest (two-species competition with extinction) we have characterized quantitatively the intermingled basins using periodic-orbit theory and scaling laws. The latter results agree with a theoretical prediction from a stochastic model, and also with an exact result for the scaling exponent we derived for the specific class of models investigated. We discuss the consequences of the scaling laws in terms of the predictability of a final state (extinction of either species) in an ecological experiment.
Resumo:
It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincare group, ensuring also the invariance of the S-matrix under the twisted action of the group. A significant new contribution here is the construction of the Poincare generators using quantum fields.
Resumo:
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.
Resumo:
Template matching is a technique widely used for finding patterns in digital images. A good template matching should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms.
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
This paper proposes a parallel hardware architecture for image feature detection based on the Scale Invariant Feature Transform algorithm and applied to the Simultaneous Localization And Mapping problem. The work also proposes specific hardware optimizations considered fundamental to embed such a robotic control system on-a-chip. The proposed architecture is completely stand-alone; it reads the input data directly from a CMOS image sensor and provides the results via a field-programmable gate array coupled to an embedded processor. The results may either be used directly in an on-chip application or accessed through an Ethernet connection. The system is able to detect features up to 30 frames per second (320 x 240 pixels) and has accuracy similar to a PC-based implementation. The achieved system performance is at least one order of magnitude better than a PC-based solution, a result achieved by investigating the impact of several hardware-orientated optimizations oil performance, area and accuracy.
Resumo:
Using the QCD sum rules we test if the charmonium-like structure Y(4274), observed in the J/psi phi invariant mass spectrum, can be described with a D(s)(D) over bar (s0)(2317)+ h.c. molecular current with J(PC) = 0(-+). We consider the contributions of condensates up to dimension ten and we work at leading order in alpha(s). We keep terms which are linear in the strange quark mass m(s). The mass obtained for such state is mD(s)D(s0) = (4.78 +/- 0.54) GeV. We also consider a molecular 0(-+) D (D) over bar (0)(2400)+ h.c. current and we obtain m(DD0) = (4.55 +/- 0.49) GeV. Our study shows that the newly observed Y(4274) in the J/psi phi invariant mass spectrum can be, considering the uncertainties, described using a molecular charmonium current. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.
Resumo:
We present a technique to build, within a dissipative bosonic network, decoherence-free channels (DFCs): a group of normal-mode oscillators with null effective damping rates. We verify that the states protected within the DFC define the well-known decoherence-free subspaces (DFSs) when mapped back into the natural network oscillators. Therefore, our technique to build protected normal-mode channels turns out to be an alternative way to build DFSs, which offers advantages over the conventional method. It enables the computation of all the network-protected states at once, as well as leading naturally to the concept of the decoherence quasi-free subspace (DQFS), inside which a superposition state is quasi-completely protected against decoherence. The concept of the DQFS, weaker than that of the DFS, may provide a more manageable mechanism to control decoherence. Finally, as an application of the DQFSs, we show how to build them for quasi-perfect state transfer in networks of coupled quantum dissipative oscillators.
Resumo:
Based only on the parallel-transport condition, we present a general method to compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting features of the non-Abelian geometric phase obtained by our method stand out: i) it is a generalization of Wilczek and Zee`s non-Abelian holonomy, in that it describes nonadiabatic evolution where the basis states are parallelly transported between distinct degenerate subspaces, and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of the basis states, even in the nondegenerate case. We apply our formalism to a two-level system evolving nonadiabatically under spontaneous decay to emphasize the non- Abelian nature of the geometric phase induced by the reservoir. We also show, through the generalized invariant theory, that our general approach encompasses previous results in the literature. Copyright (c) EPLA, 2008.
Resumo:
We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.
Resumo:
We prove three new dichotomies for Banach spaces a la W.T. Gowers` dichotomies. The three dichotomies characterise respectively the spaces having no minimal subspaces, having no subsequentially minimal basic sequences, and having no subspaces crudely finitely representable in all of their subspaces. We subsequently use these results to make progress on Gowers` program of classifying Banach spaces by finding characteristic spaces present in every space. Also, the results are used to embed any partial order of size K I into the subspaces of any space without a minimal subspace ordered by isomorphic embeddability. (c) 2009 Elsevier Inc. All fights reserved.
Resumo:
A generalized version of the nonequilibrium linear Glauber model with q states in d dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the q states. Exact expressions for the two-time autocorrelation and response functions on a d-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model.
Resumo:
The main goal of this paper is to establish some equivalence results on stability, recurrence, and ergodicity between a piecewise deterministic Markov process ( PDMP) {X( t)} and an embedded discrete-time Markov chain {Theta(n)} generated by a Markov kernel G that can be explicitly characterized in terms of the three local characteristics of the PDMP, leading to tractable criterion results. First we establish some important results characterizing {Theta(n)} as a sampling of the PDMP {X( t)} and deriving a connection between the probability of the first return time to a set for the discrete-time Markov chains generated by G and the resolvent kernel R of the PDMP. From these results we obtain equivalence results regarding irreducibility, existence of sigma-finite invariant measures, and ( positive) recurrence and ( positive) Harris recurrence between {X( t)} and {Theta(n)}, generalizing the results of [ F. Dufour and O. L. V. Costa, SIAM J. Control Optim., 37 ( 1999), pp. 1483-1502] in several directions. Sufficient conditions in terms of a modified Foster-Lyapunov criterion are also presented to ensure positive Harris recurrence and ergodicity of the PDMP. We illustrate the use of these conditions by showing the ergodicity of a capacity expansion model.