Banach spaces without minimal subspaces


Autoria(s): FERENCZI, Valentin; ROSENDAL, Christian
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

We prove three new dichotomies for Banach spaces a la W.T. Gowers` dichotomies. The three dichotomies characterise respectively the spaces having no minimal subspaces, having no subsequentially minimal basic sequences, and having no subspaces crudely finitely representable in all of their subspaces. We subsequently use these results to make progress on Gowers` program of classifying Banach spaces by finding characteristic spaces present in every space. Also, the results are used to embed any partial order of size K I into the subspaces of any space without a minimal subspace ordered by isomorphic embeddability. (c) 2009 Elsevier Inc. All fights reserved.

NSF

NSF[DMS 0556368]

FAPESR

FAPESR

Identificador

JOURNAL OF FUNCTIONAL ANALYSIS, v.257, n.1, p.149-193, 2009

0022-1236

http://producao.usp.br/handle/BDPI/30584

10.1016/j.jfa.2009.01.028

http://dx.doi.org/10.1016/j.jfa.2009.01.028

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Functional Analysis

Direitos

closedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Minimal Banach spaces #Dichotomies #Classification of Banach spaces #RAMSEY SETS #SEQUENCES #BASES #DICHOTOMY #UNIVERSAL #DIMENSION #Mathematics
Tipo

article

original article

publishedVersion