Banach spaces without minimal subspaces
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
We prove three new dichotomies for Banach spaces a la W.T. Gowers` dichotomies. The three dichotomies characterise respectively the spaces having no minimal subspaces, having no subsequentially minimal basic sequences, and having no subspaces crudely finitely representable in all of their subspaces. We subsequently use these results to make progress on Gowers` program of classifying Banach spaces by finding characteristic spaces present in every space. Also, the results are used to embed any partial order of size K I into the subspaces of any space without a minimal subspace ordered by isomorphic embeddability. (c) 2009 Elsevier Inc. All fights reserved. NSF NSF[DMS 0556368] FAPESR FAPESR |
Identificador |
JOURNAL OF FUNCTIONAL ANALYSIS, v.257, n.1, p.149-193, 2009 0022-1236 http://producao.usp.br/handle/BDPI/30584 10.1016/j.jfa.2009.01.028 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Functional Analysis |
Direitos |
closedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Minimal Banach spaces #Dichotomies #Classification of Banach spaces #RAMSEY SETS #SEQUENCES #BASES #DICHOTOMY #UNIVERSAL #DIMENSION #Mathematics |
Tipo |
article original article publishedVersion |