19 resultados para Continuous Variable Systems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Subtle quantum properties offer exciting new prospects in optical communications. For example, quantum entanglement enables the secure exchange of cryptographic keys(1) and the distribution of quantum information by teleportation(2,3). Entangled bright beams of light are increasingly appealing for such tasks, because they enable the use of well-established classical communications techniques(4). However, quantum resources are fragile and are subject to decoherence by interaction with the environment. The unavoidable losses in the communication channel can lead to a complete destruction of entanglement(5-8), limiting the application of these states to quantum-communication protocols. We investigate the conditions under which this phenomenon takes place for the simplest case of two light beams, and analyse characteristics of states which are robust against losses. Our study sheds new light on the intriguing properties of quantum entanglement and how they may be harnessed for future applications.
Resumo:
We present a version of the Poincare-Bendixson Theorem on the Klein bottle K(2) for continuous vector fields. As a consequence, we obtain the fact that K(2) does not admit continuous vector fields having a omega-recurrent injective trajectory.
Resumo:
Entanglement is an essential quantum resource for the acceleration of information processing as well as for sophisticated quantum communication protocols. Quantum information networks are expected to convey information from one place to another by using entangled light beams. We demonstrated the generation of entanglement among three bright beams of light, all of different wavelengths (532.251, 1062.102, and 1066.915 nanometers). We also observed disentanglement for finite channel losses, the continuous variable counterpart to entanglement sudden death.
Resumo:
The objective of the present study was to validate a recently reported synergistic effect between variants located in the leptin receptor (LEPR) gene and in the beta-2 adrenergic receptor (ADRB2) gene on the risk of overweight/obesity. We studied a middle-aged/ elderly sample of 4,193 nondiabetic Japanese subjects stratified according gender (1,911 women and 2,282 men). The LEPR Gln223Arg (rs1137101) variant as well as both ADRB2 Arg16Gly (rs1042713) and Gln27Glu (rs1042714) polymorphisms were analyzed. The primary outcome was the risk of overweight/obesity defined as BMI >= 25 kg/m(2), whereas secondary outcomes included the risk of a BMI >= 27 kg/m(2) and BMI as a continuous variable. None of the studied polymorphisms showed statistically significant individual effects, regardless of the group or phenotype studied. Haplotype analysis also did not disclose any associations of ADRB2 polymorphisms with BMI. However, dimensionality reduction-based models confirmed significant interactions among the investigated variants for BMI as a continuous variable as well as for the risk of obesity defined as BMI >= 27 kg/m(2). All disclosed interactions were found in men only. Our results provide external validation for a male specific ADRB2-LEPR interaction effect on the risk of overweight/obesity, but indicate that effect sizes associated with these interactions may be smaller in the population studied.
Resumo:
In this paper, we consider codimension one Anosov actions of R(k), k >= 1, on closed connected orientable manifolds of dimension n vertical bar k with n >= 3. We show that the fundamental group of the ambient manifold is solvable if and only if the weak foliation of codimension one is transversely affine. We also study the situation where one 1-parameter subgroup of R(k) admits a cross-section, and compare this to the case where the whole action is transverse to a fibration over a manifold of dimension n. As a byproduct, generalizing a Theorem by Ghys in the case k = 1, we show that, under some assumptions about the smoothness of the sub-bundle E(ss) circle plus E(uu), and in the case where the action preserves the volume, it is topologically equivalent to a suspension of a linear Anosov action of Z(k) on T(n).
Resumo:
We study the existence of transit we exchange transformations with flips defined on the unit circle S(1). We provide a complete answer to the question of whether there exists a transitive exchange transformation of S(1) defined on a subintervals and having f flips.
Resumo:
Let a > 0, Omega subset of R(N) be a bounded smooth domain and - A denotes the Laplace operator with Dirichlet boundary condition in L(2)(Omega). We study the damped wave problem {u(tt) + au(t) + Au - f(u), t > 0, u(0) = u(0) is an element of H(0)(1)(Omega), u(t)(0) = v(0) is an element of L(2)(Omega), where f : R -> R is a continuously differentiable function satisfying the growth condition vertical bar f(s) - f (t)vertical bar <= C vertical bar s - t vertical bar(1 + vertical bar s vertical bar(rho-1) + vertical bar t vertical bar(rho-1)), 1 < rho < (N - 2)/(N + 2), (N >= 3), and the dissipativeness condition limsup(vertical bar s vertical bar ->infinity) s/f(s) < lambda(1) with lambda(1) being the first eigenvalue of A. We construct the global weak solutions of this problem as the limits as eta -> 0(+) of the solutions of wave equations involving the strong damping term 2 eta A(1/2)u with eta > 0. We define a subclass LS subset of C ([0, infinity), L(2)(Omega) x H(-1)(Omega)) boolean AND L(infinity)([0, infinity), H(0)(1)(Omega) x L(2)(Omega)) of the `limit` solutions such that through each initial condition from H(0)(1)(Omega) x L(2)(Omega) passes at least one solution of the class LS. We show that the class LS has bounded dissipativeness property in H(0)(1)(Omega) x L(2)(Omega) and we construct a closed bounded invariant subset A of H(0)(1)(Omega) x L(2)(Omega), which is weakly compact in H(0)(1)(Omega) x L(2)(Omega) and compact in H({I})(s)(Omega) x H(s-1)(Omega), s is an element of [0, 1). Furthermore A attracts bounded subsets of H(0)(1)(Omega) x L(2)(Omega) in H({I})(s)(Omega) x H(s-1)(Omega), for each s is an element of [0, 1). For N = 3, 4, 5 we also prove a local uniqueness result for the case of smooth initial data.
Resumo:
Let f be a homeomorphism of the closed annulus A that preserves the orientation, the boundary components and that has a lift (f) over tilde to the in finite strip (A) over tilde which is transitive. We show that, if the rotation number of (f) over tilde restricted to both boundary components of A is strictly positive, then there exists a closed nonempty connected set Gamma subset of (A) over tilde such that Gamma subset of] - infinity,0] x [0,1], Gamma is unbounded, the projection of to Gamma A is dense, Gamma - (1, 0) subset of Gamma and (f) over tilde(Gamma) subset of Gamma. Also, if p(1) is the projection on the first coordinate of (A) over tilde, then there exists d > 0 such that, for any (z) over tilde is an element of Gamma, lim sup (n ->infinity) p(1)((f) over tilde (n) ((Z) over tilde)) - p(1) ((Z) over tilde)/n < -d.
Resumo:
Given a compact manifold X, a continuous function g : X -> IR, and a map T : X -> X, we study properties of the T-invariant Borel probability measures that maximize the integral of g. We show that if X is a n-dimensional connected Riemaniann manifold, with n >= 2, then the set of homeomorphisms for which there is a maximizing measure supported on a periodic orbit is meager. We also show that, if X is the circle, then the ""topological size"" of the set of endomorphisms for which there are g maximizing measures with support on a periodic orbit depends on properties of the function g. In particular, if g is C(1), it has interior points.
Resumo:
The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.
Resumo:
We introduce the Fibonacci bimodal maps on the interval and show that their two turning points are both in the same minimal invariant Cantor set. Two of these maps with the same orientation have the same kneading sequences and, among bimodal maps without central returns, they exhibit turning points with the strongest recurrence as possible.
Resumo:
In this work we prove that the global attractors for the flow of the equation partial derivative m(r, t)/partial derivative t = -m(r, t) + g(beta J * m(r, t) + beta h), h, beta >= 0, are continuous with respect to the parameters h and beta if one assumes a property implying normal hyperbolicity for its (families of) equilibria.
Resumo:
To evaluate reactivity to assess the temperament of Nellore steers in two feedlot housing systems (group pen or individual pen) and its relationship with plasmatic cortisol, 36 experimental units were observed five times at 28-day intervals of weight management during a 112-day feedlot confinement. A reactivity score scale ranging from 1 to 5 was applied when an animal was in the chute system. To the calmest animal, a reactivity score of 1 was ascribed and to the most agitated, 5. Blood samples were collected for cortisol analysis. No differences were found in reactivity and feedlot system. There was a relationship noted between reactivity and feedlot time in both housing systems (P < 0.01). There was a relation between reactivity and cortisol levels for group animals (P = 0.0616) and for individual ones (P < 0.01). Cortisol levels varied among housing systems (P < 0.01). Feedlot time influenced the cortisol levels (P < 0.09 individual; P < 0.01 group) and when variable time was included, these levels changed, decreasing in the group pen and increasing in individual pens. The continuous handling reduces reactivity and plasmatic cortisol, and group pen system seems to be less stressfully than individual pens. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle`s invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle`s invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this series of papers, we study issues related to the synchronization of two coupled chaotic discrete systems arising from secured communication. The first part deals with uniform dissipativeness with respect to parameter variation via the Liapunov direct method. We obtain uniform estimates of the global attractor for a general discrete nonautonomous system, that yields a uniform invariance principle in the autonomous case. The Liapunov function is allowed to have positive derivative along solutions of the system inside a bounded set, and this reduces substantially the difficulty of constructing a Liapunov function for a given system. In particular, we develop an approach that incorporates the classical Lagrange multiplier into the Liapunov function method to naturally extend those Liapunov functions from continuous dynamical system to their discretizations, so that the corresponding uniform dispativeness results are valid when the step size of the discretization is small. Applications to the discretized Lorenz system and the discretization of a time-periodic chaotic system are given to illustrate the general results. We also show how to obtain uniform estimation of attractors for parametrized linear stable systems with nonlinear perturbation.