Discontinuous local semiflows for Kurzweil equations leading to LaSalle`s invariance principle for differential systems with impulses at variable times
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
In this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle`s invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle`s invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times. (C) 2011 Elsevier Inc. All rights reserved. FAPESP[2008/04159-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[2008/03680-4] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[2008/02879-1] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[304646/2008-3] |
Identificador |
JOURNAL OF DIFFERENTIAL EQUATIONS, v.250, n.7, p.2969-3001, 2011 0022-0396 http://producao.usp.br/handle/BDPI/28890 10.1016/j.jde.2011.01.019 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Differential Equations |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Generalized ordinary differential equations #Impulse #LaSalle`s invariance principle #Impulsive semidynamical systems #SEMIDYNAMICAL SYSTEMS #TOPOLOGICAL DYNAMICS #STABILITY #Mathematics |
Tipo |
article original article publishedVersion |