ON INTEGRABLE CODIMENSION ONE ANOSOV ACTIONS OF R(k)


Autoria(s): BARBOT, Thierry; MAQUERA, Carlos
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

In this paper, we consider codimension one Anosov actions of R(k), k >= 1, on closed connected orientable manifolds of dimension n vertical bar k with n >= 3. We show that the fundamental group of the ambient manifold is solvable if and only if the weak foliation of codimension one is transversely affine. We also study the situation where one 1-parameter subgroup of R(k) admits a cross-section, and compare this to the case where the whole action is transverse to a fibration over a manifold of dimension n. As a byproduct, generalizing a Theorem by Ghys in the case k = 1, we show that, under some assumptions about the smoothness of the sub-bundle E(ss) circle plus E(uu), and in the case where the action preserves the volume, it is topologically equivalent to a suspension of a linear Anosov action of Z(k) on T(n).

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq

FAPESP[2009/06328-2]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[2009/13882-6]

FAPESP[2008/02841-4]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, v.29, n.3, p.803-822, 2011

1078-0947

http://producao.usp.br/handle/BDPI/28807

10.3934/dcds.2011.29.803

http://dx.doi.org/10.3934/dcds.2011.29.803

Idioma(s)

eng

Publicador

AMER INST MATHEMATICAL SCIENCES

Relação

Discrete and Continuous Dynamical Systems

Direitos

restrictedAccess

Copyright AMER INST MATHEMATICAL SCIENCES

Palavras-Chave #Anosov action #Verjovsky conjecture #FLOWS #FOLIATIONS #CONJECTURE #VERJOVSKY #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion