21 resultados para Commutative Semisimple Group Algebras
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved
Resumo:
We investigate the structure of commutative non-associative algebras satisfying the identity x(x(xy)) = 0. Recently, Correa and Hentzel proved that every commutative algebra satisfying above identity over a field of characteristic not equal 2 is solvable. We prove that every commutative finite-dimensional algebra u over a field F of characteristic not equal 2, 3 which satisfies the identity x(x(xy)) = 0 is nilpotent. Furthermore, we obtain new identities and properties for this class of algebras.
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.
Resumo:
Let R be a commutative ring, G a group and RG its group ring. Let phi : RG -> RG denote the R-linear extension of an involution phi defined on G. An element x in RG is said to be phi-antisymmetric if phi(x) = -x. A characterization is given of when the phi-antisymmetric elements of RG commute. This is a completion of earlier work.
Resumo:
Analogous to *-identities in rings with involution we define *-identities in groups. Suppose that G is a torsion group with involution * and that F is an infinite field with char F not equal 2. Extend * linearly to FG. We prove that the unit group U of FG satisfies a *-identity if and only if the symmetric elements U(+) satisfy a group identity.
Resumo:
Let F be an infinite field of characteristic different from 2, G a group and * an involution of G extended by linearity to an involution of the group algebra FG. Here we completely characterize the torsion groups G for which the *-symmetric units of FG satisfy a group identity. When * is the classical involution induced from g -> g(-1), g is an element of G, this result was obtained in [ A. Giambruno, S. K. Sehgal, A. Valenti, Symmetric units and group identities, Manuscripta Math. 96 (1998) 443-461]. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Let F-sigma(lambda)vertical bar G vertical bar be a crossed product of a group G and the field F. We study the Lie properties of F-sigma(lambda)vertical bar G vertical bar in order to obtain a characterization of those crossed products which are upper (lower) Lie nilpotent and Lie (n, m)-Engel. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let G be a finite group, F a field, FG the group ring of G over F, and J(FG) the Jacobson radical of FG. Using a result of Berman and Witt, we give a method to determine the structure of the center of FG/J(FG), provided that F satisfies a field theoretical condition.
Resumo:
For a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We investigate polynomial identities on an alternative loop algebra and group identities on its (Moufang) unit loop. An alternative loop ring always satisfies a polynomial identity, whereas whether or not a unit loop satisfies a group identity depends on factors such as characteristic and centrality of certain kinds of idempotents.
Resumo:
We describe bases of free commutative Moufang loop with seven generators and calculate the order of this loop. (c) 2011 Published by Elsevier Inc.
Resumo:
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.
Resumo:
We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.
Resumo:
Let A be a finite-dimensional Q-algebra and Gamma subset of A a Z-order. We classify those A with the property that Z(2) negated right arrow U(Gamma) and refer to this as the hyperbolic property. We apply this in case A = K S is a semigroup algebra, with K = Q or K = Q(root-d). A complete classification is given when KS is semi-simple and also when S is a non-semi-simple semigroup. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We develop and describe continuous and discrete transforms of class functions on a compact semisimple, but not simple, Lie group G as their expansions into series of special functions that are invariant under the action of the even subgroup of the Weyl group of G. We distinguish two cases of even Weyl groups-one is the direct product of even Weyl groups of simple components of G and the second is the full even Weyl group of G. The problem is rather simple in two dimensions. It is much richer in dimensions greater than two-we describe in detail E-transforms of semisimple Lie groups of rank 3.