99 resultados para COMPACT GROUPS
Resumo:
We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let A be a finitely generated abelian group. We describe the automorphism group Aut(A) using the rank of A and its torsion part p-part A(p). For a finite abelian p-group A of type (k(1),..., k(n)), simple necessary and sufficient conditions for an n x n-matrix over integers to be associated with an automorphism of A are presented. Then, the automorphism group Aut(A) for a finite p-group A of type (k(1), k(2)) is analyzed. (C) 2008 Mathematical Institute Slovak Academy of Sciences.
Resumo:
We classify groups G such that the unit group U-1 (ZG) is hypercentral. In the second part, we classify groups G whose modular group algebra has hyperbolic unit groups U-1 (KG).
Resumo:
Let n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).
Resumo:
Let G be a finite group and ZG its integral group ring. We show that if alpha is a nontrivial bicyclic unit of ZG, then there are bicyclic units beta and gamma of different types, such that
Resumo:
Let R be a noncommutative central simple algebra, the center k of which is not absolutely algebraic, and consider units a,b of R such that {a,a(b)} freely generate a free group. It is shown that such b can be chosen from suitable Zariski dense open subsets of R, while the a can be chosen from a set of cardinality \k\ (which need not be open).
Resumo:
We prove the semi-Riemannian bumpy metric theorem using equivariant variational genericity. The theorem states that, on a given compact manifold M, the set of semi-Riemannian metrics that admit only nondegenerate closed geodesics is generic relatively to the C(k)-topology, k=2, ..., infinity, in the set of metrics of a given index on M. A higher-order genericity Riemannian result of Klingenberg and Takens is extended to semi-Riemannian geometry.
Resumo:
Given manifolds M and N, with M compact, we study the geometrical structure of the space of embeddings of M into N, having less regularity than C(infinity) quotiented by the group of diffeomorphisms of M.
Resumo:
In this paper, we study the Reidemeister spectrum for metabelian groups of the form Q(n) x Z and Z[1/p](n) x Z. Particular attention is given to the R(infinity)-property of a subfamily of these groups.
Resumo:
Special groups are an axiomatization of the algebraic theory of quadratic forms over fields. It is known that any finite reduced special group is the special group of some field. We show that any special group that is the projective limit of a projective system of finite reduced special groups is also the special group of some field.
Resumo:
In this paper, we determine the lower central and derived series for the braid groups of the projective plane. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is interesting in its own right. The n-string braid groups B(n)(RP(2)) of the projective plane RP(2) were originally studied by Van Buskirk during the 1960s. and are of particular interest due to the fact that they have torsion. The group B(1)(RP(2)) (resp. B(2)(RP(2))) is isomorphic to the cyclic group Z(2) of order 2 (resp. the generalised quaternion group of order 16) and hence their lower central and derived series are known. If n > 2, we first prove that the lower central series of B(n)(RP(2)) is constant from the commutator subgroup onwards. We observe that Gamma(2)(B(3)(RP(2))) is isomorphic to (F(3) X Q(8)) X Z(3), where F(k) denotes the free group of rank k, and Q(8) denotes the quaternion group of order 8, and that Gamma(2)(B(4)(RP(2))) is an extension of an index 2 subgroup K of P(4)(RP(2)) by Z(2) circle plus Z(2). As for the derived series of B(n)(RP(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group B(n)(RP(2)) being finite and soluble for n <= 2, the critical cases are n = 3, 4. We are able to determine completely the derived series of B(3)(RP(2)). The subgroups (B(3)(RP(2)))((1)), (B(3)(RP(2)))((2)) and (B(3)(RP(2)))((3)) are isomorphic respectively to (F(3) x Q(8)) x Z(3), F(3) X Q(8) and F(9) X Z(2), and we compute the derived series quotients of these groups. From (B(3)(RP(2)))((4)) onwards, the derived series of B(3)(RP(2)), as well as its successive derived series quotients, coincide with those of F(9). We analyse the derived series of B(4)(RP(2)) and its quotients up to (B(4)(RP(2)))((4)), and we show that (B(4)(RP(2)))((4)) is a semi-direct product of F(129) by F(17). Finally, we give a presentation of Gamma(2)(B(n)(RP(2))). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.
Resumo:
Under p = c, we prove that it is possible to endow the free abelian group of cardinality c with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.
Resumo:
Analogous to *-identities in rings with involution we define *-identities in groups. Suppose that G is a torsion group with involution * and that F is an infinite field with char F not equal 2. Extend * linearly to FG. We prove that the unit group U of FG satisfies a *-identity if and only if the symmetric elements U(+) satisfy a group identity.
Resumo:
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.