120 resultados para Parameter Identification
Resumo:
One of the e-learning environment goal is to attend the individual needs of students during the learning process. The adaptation of contents, activities and tools into different visualization or in a variety of content types is an important feature of this environment, bringing to the user the sensation that there are suitable workplaces to his profile in the same system. Nevertheless, it is important the investigation of student behaviour aspects, considering the context where the interaction happens, to achieve an efficient personalization process. The paper goal is to present an approach to identify the student learning profile analyzing the context of interaction. Besides this, the learning profile could be analyzed in different dimensions allows the system to deal with the different focus of the learning.
Resumo:
Void fraction sensors are important instruments not only for monitoring two-phase flow, but for furnishing an important parameter for obtaining flow map pattern and two-phase flow heat transfer coefficient as well. This work presents the experimental results obtained with the analysis of two axially spaced multiple-electrode impedance sensors tested in an upward air-water two-phase flow in a vertical tube for void fraction measurements. An electronic circuit was developed for signal generation and post-treatment of each sensor signal. By phase shifting the electrodes supplying the signal, it was possible to establish a rotating electric field sweeping across the test section. The fundamental principle of using a multiple-electrode configuration is based on reducing signal sensitivity to the non-uniform cross-section void fraction distribution problem. Static calibration curves were obtained for both sensors, and dynamic signal analyses for bubbly, slug, and turbulent churn flows were carried out. Flow parameters such as Taylor bubble velocity and length were obtained by using cross-correlation techniques. As an application of the void fraction tested, vertical flow pattern identification could be established by using the probability density function technique for void fractions ranging from 0% to nearly 70%.
Resumo:
Crushed stone mining is the third largest mining economy in Brazil, where almost half is produced in the Sao Paulo metropolitan region. The segment registers the highest number of accidents among the extractive industries, which justifies the concern with workers` health and safety, and the importance of controlling occupational hazards. Since 2002, the NR-22 Standard (NR-22: Occupational Health and Safety in Mining) makes compulsory the elaboration of a Risk Management Program that identifies risks and establishes control measures. Considering the crushed stone mining industry importance to the state, this paper evaluates and discusses the risks identified in unit operations during the production process of crushed stone in an open pit mine in order to propose control measures for the development of the Risk Management Program. Although this study refers to a specific quarry, it can be applied to other mines from the same sector since some considerations are made regarding differences in manufacturing processes. The research was based on the identification of the main risks associated with drilling, blasting, load & haulage, crushing and screening through field measurements of some hazardous agents, together with company reports. The results contributed to the choice of the appropriate control measures for the improvement Of workers` health and safety conditions.
Resumo:
The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments oil smooth and pre-notched tension specimens wits carried Out for it wide range of stress triaxialities. The underlying continuum damage model is based oil kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based oil experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending oil stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed ill detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Modern Integrated Circuit (IC) design is characterized by a strong trend of Intellectual Property (IP) core integration into complex system-on-chip (SOC) architectures. These cores require thorough verification of their functionality to avoid erroneous behavior in the final device. Formal verification methods are capable of detecting any design bug. However, due to state explosion, their use remains limited to small circuits. Alternatively, simulation-based verification can explore hardware descriptions of any size, although the corresponding stimulus generation, as well as functional coverage definition, must be carefully planned to guarantee its efficacy. In general, static input space optimization methodologies have shown better efficiency and results than, for instance, Coverage Directed Verification (CDV) techniques, although they act on different facets of the monitored system and are not exclusive. This work presents a constrained-random simulation-based functional verification methodology where, on the basis of the Parameter Domains (PD) formalism, irrelevant and invalid test case scenarios are removed from the input space. To this purpose, a tool to automatically generate PD-based stimuli sources was developed. Additionally, we have developed a second tool to generate functional coverage models that fit exactly to the PD-based input space. Both the input stimuli and coverage model enhancements, resulted in a notable testbench efficiency increase, if compared to testbenches with traditional stimulation and coverage scenarios: 22% simulation time reduction when generating stimuli with our PD-based stimuli sources (still with a conventional coverage model), and 56% simulation time reduction when combining our stimuli sources with their corresponding, automatically generated, coverage models.
Resumo:
In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.
Resumo:
As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.
Resumo:
Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience due to its noninvasive and high spatial resolution properties compared to other methods like PET or EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders. Several methods like correlation analysis, structural equation modeling, and dynamic causal models have been proposed to quantify connectivity strength. An important concept related to connectivity modeling is Granger causality, which is one of the most popular definitions for the measure of directional dependence between time series. In this article, we propose the application of the partial directed coherence (PDC) for the connectivity analysis of multisubject fMRI data using multivariate bootstrap. PDC is a frequency domain counterpart of Granger causality and has become a very prominent tool in EEG studies. The achieved frequency decomposition of connectivity is useful in separating interactions from neural modules from those originating in scanner noise, breath, and heart beating. Real fMRI dataset of six subjects executing a language processing protocol was used for the analysis of connectivity. Hum Brain Mapp 30:452-461, 2009. (C) 2007 Wiley-Liss, Inc.
Resumo:
This paper presents the design and implementation of an embedded soft sensor, i. e., a generic and autonomous hardware module, which can be applied to many complex plants, wherein a certain variable cannot be directly measured. It is implemented based on a fuzzy identification algorithm called ""Limited Rules"", employed to model continuous nonlinear processes. The fuzzy model has a Takagi-Sugeno-Kang structure and the premise parameters are defined based on the Fuzzy C-Means (FCM) clustering algorithm. The firmware contains the soft sensor and it runs online, estimating the target variable from other available variables. Tests have been performed using a simulated pH neutralization plant. The results of the embedded soft sensor have been considered satisfactory. A complete embedded inferential control system is also presented, including a soft sensor and a PID controller. (c) 2007, ISA. Published by Elsevier Ltd. All rights reserved.
Resumo:
A prenylated benzophenone, hyperibone A, was isolated from the hexane fraction of Brazilian propolis type 6. Its structure was determined by spectral analysis including 2D NMR. This compound exhibited cytotoxic activity against HeLa tumor cells (IC(50) = 0.1756 mu M), strong antimicrobial activity (MIC range-0.73-6.6 mu g/mL; MBC range-2.92-106 mu g/mL) against Streptococcus mutans, Streptococcus sobrinus, Streptococcus oralis, Staphylococcus aureus, and Actinomyces naeslundii, and the results of its cytotoxic and antimicrobial activities were considered good. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.
Resumo:
Yellow leaf syndrome was a serious problem in the beginning of the 1990s in Brazil, when yield losses were estimated to be around 50%. The disease is currently endemic, but it is considered potentially important. Previous studies have revealed only the presence of a luteovirus associated with the disease in Brazil. We report that a phytoplasma of 16SrI-B is also associated with this disease. This is the first demonstration of the presence of a group 16SrI-B phytoplasma in association with sugarcane yellow leaf in Brazil.
Resumo:
Symptoms resembling giant calyx, a graft-transmissible disease, were observed on 1-5% of eggplant (aubergine; Solanum melongena L.) plants in production fields in Sao Paulo state, Brazil. Phytoplasmas were detected in 1 2 of 1 2 samples from symptomatic plants that were analysed by a nested PCR assay employing 16S rRNA gene primers R16mF2/R16mR1 followed by R16F2n/R16R2. RFLP analysis of the resulting rRNA gene products (1.2 kb) indicated that all plants contained similar phytoplasmas, each closely resembling strains previously classified as members of RFLP group 16SrIII (X-disease group). Virtual RFLP and phylogenetic analyses of sequences derived from PCR products identified phytoplasmas infecting eggplant crops grown in Piracicaba as a lineage of the subgroup 16SrIII-J, whereas phytoplasmas detected in plants grown in Braganca Paulista were tentatively classified as members of a novel subgroup 16SrIII-U. These findings confirm eggplant as a new host of group 16SrIII-J phytoplasmas and extend the known diversity of strains belonging to this group in Brazil.
Resumo:
Marker assisted selection depends on the identification of tightly linked association between marker and the trait of interest. In the present work, functional (EST-SSRs) and genomic (gSSRs) microsatellite markers were used to detect putative QTLs for sugarcane yield components (stalk number, diameter and height) and as well as for quality parameters (Brix, Pol and fibre) in plant cane. The mapping population (200 individuals) was derived from a bi-parental cross (IACSP95-3018 x IACSP93-3046) from the IAC Sugarcane Breeding Program. As the map is under construction, single marker trait association analysis based on the likelihood ratio test was undertaken to detect the QTLs. Of the 215 single dose markers evaluated (1:1 and 3:1), 90 (42%) were associated with putative QTLs involving 43 microsatellite primers (18 gSSRs and 25 EST-SSRs). For the yield components, 41 marker/trait associations were found: 20 for height, 6 for diameter and 15 for stalk number. An EST-SSRs marker with homology to non-phototropic hypocotyls 4 (NPH4) protein was associated with a putative QTL with positive effect for diameter as also with a negative effect for stalk number. In relation to the quality parameters, 18 marker trait associations were found for Brix, 19 for Pol, and 12 for fibre. For fibre, 58% of the QTLs detected showed a negative effect on this trait. Some makers associated with QTLs with a negative effect for fibre showed a positive effect for Pol, reflecting the negative correlation generally observed between these traits.