100 resultados para FOCAL ADHESION KINASE
Resumo:
Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.
Resumo:
Most meningiomas are benign tumours of arachnoidal origin, although a small number have high proliferative rates and invasive properties which complicate complete surgical resection and are associated with increased recurrence rates. Few prognostic indicators exist for meningiomas and further research is necessary to identify factors that influence tumour invasion, oedema and recurrence. Paraffin sections from 25 intracranial meningiomas were analysed for expression of the proteins vascular endothelial growth factor (VEGF), VEGF receptors Flt1 and Flk1, E-cadherin, metalloproteinases 2 and 9 (MMP2, MMP9), CD44, receptor for hyaluronic acid-mediated motility (RHAMM), hyaluronic acid (HA), CD45, cyclooxygenase 2 (COX2), brain fatty acid binding protein (BFABP), Ki67, and proliferating cell nuclear antigen (PCNA). Correlations among protein expression were found for several markers of proliferation (Ki67, PCNA, MI) and microvessel density (MVD). COX2 expression increased with increasing with tumour grade and correlated with Ki67, PCNA, MI, MVD, and BFABP. BFABP expression also correlated with Ki67 and PCNA expression. Relationships were also identified among angiogenic factors (VEGF, Flt1, Flk1) and proliferation markers. Oedema was found to correlate with MMP9 expression and MMP9 also correlated with proliferation markers. No correlations were found for MMP2, E-cadherin, or CD44 in meningiomas. In conclusion Ki67, PCNA, MI, MVD, BFABP, and COX2 were significantly correlated with meningioma tumour grade and with each other. These findings, by correlating both intracellular fatty acid transport and eicosanoid metabolism with tumour proliferation, as determined by Ki67 labelling and mitotic index, suggest fatty acids are involved in the progression of meningiomas.
Resumo:
Simultaneous inhibition of the retrotrapezoid nucleus (RTN) and raphe obscurus (ROb) decreased the systemic CO2 response by 51%, an effect greater than inhibition of RTN (- 24%) or ROb (0%) alone, suggesting that ROb modulates chemoreception by interaction with the RTN (19). We investigated this interaction further by simultaneous dialysis of artificial cerebrospinal fluid equilibrated with 25% CO2 in two probes located in or adjacent to the RTN and ROb in conscious adult male rats. Ventilation was measured in a whole body plethysmograph at 30 C. There were four groups (n = 5): 1) probes correctly placed in both RTN and ROb (RTN-ROb); 2) one probe correctly placed in RTN and one incorrectly placed in areas adjacent to ROb (RTN-peri-ROb); 3) one probe correctly placed in ROb and one probe incorrectly placed in areas adjacent to RTN (peri-RTN-ROb); and 4) neither probe correctly placed (peri-RTN-peri-ROb). Focal simultaneous acidification of RTN-ROb significantly increased ventilation ((V) over dot E) up to 22% compared with baseline, with significant increases in both breathing frequency and tidal volume. Focal acidification of RTN-peri-ROb increased (V) over dot E significantly by up to 15% compared with baseline. Focal acidification of ROb and peri-RTN had no significant effect. The simultaneous acidification of regions just outside the RTN and ROb actually decreased (V) over dot E by up to 11%. These results support a modulatory role for the ROb with respect to central chemoreception at the RTN.
Resumo:
Background: This study of a chronic porcine postinfarction model examined whether linear epicardial cryoablation was capable of creating large, homogenous lesions in regions of the myocardium including scarred ventricle. Endocardial and epicardial focal cryolesions were also compared to determine if there were significant differences in lesion characteristics. Methods: Eighty focal endocardial and 28 focal epicardial cryoapplications were delivered to eight normal caprine and four normal porcine ventricular myocardium, and 21 linear cryolesions were applied along the border of infarcted epicardial tissue in a chronic porcine infarct model in six swines. Results: Focal endocardial cryolesions in normal animals measured 9.7 +/- 0.4 mm (length) by 7.3 +/- 1.4 mm (width) by 4.8 +/- 0.2 mm (depth), while epicardial lesions measured 10.2 +/- 1.4 mm (length) by 7.7 +/- 2 mm (width) by 4.6 +/- 0.9 mm (depth); P > 0.05. Linear epicardial cryolesions in the chronic porcine infarct model measured 36.5 +/- 7.8 mm (length) by 8.2 +/- 1.3 mm (width) by 6.0 +/- 1.2 mm (depth). The mean depth of linear cryolesions applied to the border of the infarct scar was 7 +/- 0.7 mm, as measured by magnetic resonance imaging. Conclusions:Cryoablation can create deep lesions when delivered to the ventricular epicardium. Endocardial and epicardial cryolesions created by a focal cryoablation catheter are similar in size and depth. The ability to rapidly create deep linear cryolesions may prove to be beneficial in substrate-based catheter ablation of ventricular arrhythmias.
Resumo:
Serum levels of troponin and heart-related fraction of creatine kinase (CK-MB) mass are used as diagnostic and prognostic criteria in myocardial infarction, but the relation between those levels and-the necropsy-determined size of necrosis has not been tested in human beings. In this retrospective study, 1-cm-thick transverse sections of the ventricles were cut from the base to the apex in the necropsy hearts of 27 patients aged 47 to 86 years (mean 66, median 69; 19 men). Total and necrotic areas were measured using a computer-linked image analysis system. The weights of the necrotic areas were also calculated. The correlations of the areas and weights of necrotic myocardium with the highest serum values of CK-MB mass and troponin 1, which had been quantified during life by chemiluminescence immunoassays, were verified by Pearson`s test; results were considered significant at p <= 50.05. Significant correlations were detected between CK-MB mass peak and infarct size (r = 0.63, p < 0.01) and weight (r = 0.69, p < 0.01) and between CK-MB mass and highest troponin level (r = 0.73, p < 0.01); however, the correlations between highest troponin level and myocardial infarct size (r = 0.31, p = 0.11) and weight (r = 0.35, p = 0.07) were small and nonsignificant. In conclusion, despite the well-established role of serum levels of troponin as a diagnostic tool for myocardial infarction, their highest values showed poor correlations with the extent of infarct. In contrast, the highest serum level of CK-MB mass was well correlated with myocardial infarct size. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: Newly formed biofilm after implant debridement may challenge the long-term stability of peri-implant therapy. This in vitro study aimed to assess the roughness and adherence of Streptococcus sanguinis after treatment of smooth and rough titanium surfaces with an erbium-doped: yttrium, aluminum, and garnet (Er:YAG) laser, metal and plastic curets, and an air-powder abrasive system. Methods: Forty titanium disks with smooth-machined surfaces and 40 with sand-blasted and acid-etched surfaces were divided into the following treatment groups: Er:YAG laser; plastic curet; metal curet, and air-powder abrasive system. The surface roughness (roughness average [Raj) before and after treatments was determined using a profilometer. S. sanguinis (American Type Culture Collection 10556) was grown on treated and untreated specimens, and the amounts of retained bacteria on the surfaces were measured by the culture method. Rough and smooth surfaces with and without a suspension of S. sanguinis were also analyzed using scanning electron microscopy (SEM). Results: For smooth surfaces, the roughest surfaces were produced by metal curets (repeated - measures analysis of variance [ANOVA] and Tukey test; P<0.05). The rough-surface profile was not altered by any of the treatments (repeated-measures ANOVA; P>0.05). Rough surfaces treated with metal curets and air-powder abrasion showed the lowest level of bacteria] adhesion (two-way ANOVA and Tukey test; P<0.05). SEM analysis revealed distinct surface profiles produced by all devices. Conclusions: Metal curets are not recommended for smooth titanium surface debridement due to severe texture alteration. Rough surfaces treated with a metal curet and the air-powder abrasive system were less susceptible to bacterial adhesion, probably due to texture modification and the presence of abrasive deposits. J Periodontol 2009;80: 1824-1832.
Resumo:
The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 mu m diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm(2) with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm(2) with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.
Resumo:
Objective. The aim of this study was to demonstrate the immunohistochemical profile of oral inflammatory myofibroblastic tumors (IMTs) along with morphologic analysis. Study design. Three cases diagnosed as oral IMTs were selected to compile an immunohistochemical panel constituted by calponin, caldesmon, Bcl-2, desmin, fibronectin, CD68, Ki-67, S100, anaplastic lymphoma kinase (ALK), alpha-smooth muscle actin, cytokeratins AE1/AE3, muscle-specific actin, CD34, and vimentin. An oral squamous cell carcinoma with a focal area of desmoplastic stroma was used as control for the stained myofibroblastic cells. Results. All oral IMTs were positive for calponin, revealing a strong and diffuse expression in the spindle-shaped cells. The lesions were also positive for vimentin (3/3), fibronectin (3/3), alpha-smooth muscle actin (3/3), and muscle-specific actin (1/3) and negative for h-caldesmon, Bcl-2, desmin, CD68, Ki-67, S100, ALK, cytokeratins AE1/AE3, and CD34. Conclusions. Within the results encountered, the present panel should be of great assistance in the diagnosis of oral IMTs. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111: 749-756)
Resumo:
Dentin irradiation with erbium lasers has been reported to alter the composite resin bond to this treated surface. There is still a lack of studies reporting the effect of erbium lasers on dentin organic content and elucidating how laser treatment could interfere in the quality of the resin-dentin interface. This study aimed to evaluate the effect of erbium laser irradiation on dentin morphology and microtensile bond strength (lTBS) of an adhesive to dentin. Seventy-two dentin disks were divided into nine groups (n = 8): G1-Control (600-grit SiC paper); Er:YAG groups: G2-250 mJ/4 Hz; G3-200 mJ/4 Hz; G4-180 mJ/10 Hz; G5-160 mJ/10 Hz; Er, Cr:YSGG groups: G6-2 W/20 Hz; G7-2.5 W/20 Hz; G8-3 W/20 Hz; G9-4 W/20 Hz. Specimens were processed for cross-sectional analysis by scanning electron microscopy (SEM) (n = 3), transmission electron microscopy (TEM) (n = 2), and adhesive interface (n = 3). Forty-five dentin samples (n = 5) were restored and submitted to lTBS testing. ANOVA (alpha = 5%) revealed that G1 presented the highest lTBS values and irradiated groups did not differ from each other. TEM micrographs showed a superficial layer of denatured collagen fibrils. For SEM micrographs, it was possible to verify the laser effects extending to dentin subsurface presenting a rough aspect. Cross-sectional dentin micrographs of this hybridized surface revealed a pattern of modified tags with ringlike structures around it. This in vitro study showed that erbium laser irradiation interacts with the dental hard tissue resulting in a specific morphological pattern of dentin and collagen fibrils that negatively affected the bond strength to composite resin. Microsc. Res. Tech. 74:720-726, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
This in vitro study evaluated the microtensile bond strength of a resin composite to Er:YAG-prepared dentin after long-term storage and thermocycling. Eighty bovine incisors were selected and their roots removed. The crowns were ground to expose superficial dentin. The samples were randomly divided according to cavity preparation method (I-Er:YAG laser and II-carbide bur). Subsequently, an etch & rinse adhesive system was applied and the samples were restored with a resin composite. The samples were subdivided according to time of water storage (WS)/number of thermocycles (TC) performed: A) 24 hours WS/no TC; B) 7 days WS/500 TC; C) 1 month WS/2,000 TC; D) 6 months WS/12,000 TC. The teeth were sectioned in sticks with a cross-sectional area of 1.0-mm(2), which were loaded in tension in a universal testing machine. The data were subjected to two-way ANOVA, Scheffe and Fisher`s tests at a 5% level. In general, the bur-prepared group displayed higher microtensile bond strength values than the laser-treated group. Based on one-month water storage and 2,000 thermocycles, the performance of the tested adhesive system to Er:YAG-laser irradiated dentin was negatively affected (Group IC), while adhesion of the bur-prepared group decreased only within six months of water storage combined with 12,000 thermocycles (Group IID). It may be concluded that adhesion to the Er:YAG laser cavity preparation was more affected by the methods used for simulating degradation of the adhesive interface.
Resumo:
We report our pediatric experience with lacosarnide, a new antiepileptic drug, approved by the US Food and Drug Administration as adjunctive therapy in focal epilepsy in patients more than 17 years old. We retrospectively reviewed charts for lacosamide use and seizure frequency outcome in patients with focal epilepsy (Wilcoxon signed rank test). Sixteen patients (7 boys) were identified (median dose 275 mg daily, 4.7 mg/kg daily; mean age 14.9 years, range 8-21 years). Patients were receiving a median of 2 antiepileptic drugs (interquartile range [IQR] 1.7-3) in addition to having undergone previous epilepsy surgery (n = 3), vagus nerve stimulation (n = 9), and ketogenic diet (n = 3). Causes included structural (encephalomalacia and diffuse encephalitis, 1 each; stroke in 2) and genetic abnormalities (Aarskog and Rett syndromes, 1 each) or cause not known (n = 10). Median seizure frequency at baseline was 57 per month (IQR 7-75), and after a median follow-up of 4 months (range 1-13 months) of receiving lacosamide, it was 12.5 per month (IQR 3-75), (P < 0.01). Six patients (37.5%; 3 seizure free) were classified as having disease that responded to therapy (>= 50% reduction seizure frequency) and 10 as having disease that did not respond to therapy (<50% in 3; increase in 1; unchanged in 6). Adverse events (tics, behavioral disturbance, seizure worsening, and depression with suicidal ideation in 1 patient each) prompted lacosamide discontinuation in 4/16 (25%). This retrospective study of 16 children with drug-resistant focal epilepsy demonstrated good response to adjunctive lacosamide therapy (median seizure reduction of 39.6%; 37.5% with >= 50% seizure reduction) without severe adverse events. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Plasmodium falciparum, the most lethal malarial parasite, expresses an ortholog for the protein kinase C (PKC) activator RACK1. However, PKC has not been identified in this parasite, and the mammalian RACK1 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R). Therefore we investigated whether the Plasmodium ortholog PfRACK also can affect InsP3R-mediated Ca(2+) signaling in mammalian cells. GFP-tagged PfRACK and endogenous RACK1 were expressed in a similar distribution within cells. PfRACK inhibited agonist-induced Ca(2+) signals in cells expressing each isoform of the InsP3R, and this effect persisted when expression of endogenous RACK1 was reduced by siRNA. PfRACK also inhibited Ca(2+) signals induced by photorelease of caged InsP3. These findings provide evidence that PfRACK directly inhibits InsP3-mediated Ca(2+) signaling in mammalian cells. Interference with host cell signaling pathways to subvert the host intracellular milieu may be an important mechanism for parasite survival. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this study we investigated energy metabolism in the mdx mouse brain. To this end, prefrontal cortex, cerebellum, hippocampus, striatum, and cortex were analyzed. There was a decrease in Complex I but not in Complex 11 activity in all structures. There was an increase in Complex III activity in striatum and a decrease in Complex IV activity in prefrontal cortex and striatum. Mitochondrial creatine kinase activity was increased in hippocampus, prefrontal cortex, cortex, and striatum. Our results indicate that there is energy metabolism dysfunction in the mdx mouse brain. Muscle Nerve 41: 257-260, 2010
Resumo:
Objectives: The effect of glucose and palmitate on the phosphorylation of proteins associated with cell growth and survival (extracellular signal-regulated kinase 1/2 [ERK1/2] and stress-activated protein kinase/c-Jun NH2-terminal kinase [SAPK/JNK]) and on the expression of immediate early genes was investigated. Methods: Groups of freshly isolated rat pancreatic islets were incubated in 10-mmol/L glucose with palmitate, LY294002, or fumonisin B1 for the measurement of the phosphorylation and the content of ERK1/2, JNK/SAPK, and v-akt murine thymoma viral oncongene (AKT) (serine 473) by immunoblotting. The expressions of the immediate early genes, c-fos and c-jun, were evaluated by reverse transcription-polymerase chain reaction. Results: Glucose at 10 mmol/L induced ERK1/2 and AKT phosphorylations and decreased SAPK/JNK phosphorylation. Palmitate (0.1 mmol/L) abolished the glucose effect on ERK1/2, AKT, and SAPK/JNK phosphorylations. LY294002 caused a similar effect. The inhibitory effect of palmitate on glucose-induced ERK1/2 and AKT phosphorylation changes was not observed in the presence of fumonisin B1. Glucose increased c-fos and decreased c-jun expressions. Palmitate and LY294002 abolished these latter glucose effects. The presence of fumonisin B1 abolished the effect induced by palmitate on c-jun expression. Conclusions: Our results suggest that short-term changes of mitogen-activated protein kinase and AKT signaling pathways and c-fos and c-jun expressions caused by glucose are abolished by palmitate through phosphatidylinositol 3-kinase inhibition via ceramide synthesis.
Resumo:
The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular Mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 mu M of palmitate did rot affect cel viability but significantly reduced FA oxidation by similar to 26.5%, similar to 43.5%, similar to 50%, and similar to 47%, respectively. Interestingly, this occurred despite significant increases in AMPK (similar to 2.5-fold) and ACC (similar to 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity (similar to 38-60%). Low concentrations of palmitate (50-100 mu M) caused an increase (similar to 30%) in CPT-I activity. However, as the concentration of palmitate increased, CPT-I activity decreased by similar to 32% after exposure for 8 h to 800 mu M of palmitate. Although FA uptake was reduced (similar to 35%) in cells exposed to increasing, palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values similar to 2.3-, similar to 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 mu M palmitate, respectively. Interestingly, myotubes exposed to 400 mu M of palmitate for 1h increased basal glucose uptake and glycogen synthesis by similar to 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake (similar to 65%) and glycogen synthesis (30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA Metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs. Such as in obesity and Type 2 Diabetes.