61 resultados para difference equation
Resumo:
We consider attractors A(eta), eta epsilon [0, 1], corresponding to a singularly perturbed damped wave equation u(tt) + 2 eta A(1/2)u(t) + au(t) + Au = f (u) in H-0(1)(Omega) x L-2 (Omega), where Omega is a bounded smooth domain in R-3. For dissipative nonlinearity f epsilon C-2(R, R) satisfying vertical bar f ``(s)vertical bar <= c(1 + vertical bar s vertical bar) with some c > 0, we prove that the family of attractors {A(eta), eta >= 0} is upper semicontinuous at eta = 0 in H1+s (Omega) x H-s (Omega) for any s epsilon (0, 1). For dissipative f epsilon C-3 (R, R) satisfying lim(vertical bar s vertical bar) (->) (infinity) f ``(s)/s = 0 we prove that the attractor A(0) for the damped wave equation u(tt) + au(t) + Au = f (u) (case eta = 0) is bounded in H-4(Omega) x H-3(Omega) and thus is compact in the Holder spaces C2+mu ((Omega) over bar) x C1+mu((Omega) over bar) for every mu epsilon (0, 1/2). As a consequence of the uniform bounds we obtain that the family of attractors {A(eta), eta epsilon [0, 1]} is upper and lower semicontinuous in C2+mu ((Omega) over bar) x C1+mu ((Omega) over bar) for every mu epsilon (0, 1/2). (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A 2D steady model for the annular two-phase flow of water and steam in the steam-generating boiler pipes of a liquid metal fast breeder reactor is proposed The model is based on thin-layer lubrication theory and thin aerofoil theory. The exchange of mass between the vapour core and the liquid film due to evaporation of the liquid film is accounted for using some simple thermodynamics models, and the resultant change of phase is modelled by proposing a suitable Stefan problem Appropriate boundary conditions for the now are discussed The resulting non-lineal singular integro-differential equation for the shape of the liquid film free surface is solved both asymptotically and numerically (using some regularization techniques) Predictions for the length to the dryout point from the entry of the annular regime are made The influence of both the traction tau provided by the fast-flowing vapour core on the liquid layer and the mass transfer parameter eta on the dryout length is investigated
Resumo:
We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper considers the stability of explicit, implicit and Crank-Nicolson schemes for the one-dimensional heat equation on a staggered grid. Furthemore, we consider the cases when both explicit and implicit approximations of the boundary conditions arc employed. Why we choose to do this is clearly motivated and arises front solving fluid flow equations with free surfaces when the Reynolds number can be very small. in at least parts of the spatial domain. A comprehensive stability analysis is supplied: a novel result is the precise stability restriction on the Crank-Nicolson method when the boundary conditions are approximated explicitly, that is, at t =n delta t rather than t = (n + 1)delta t. The two-dimensional Navier-Stokes equations were then solved by a marker and cell approach for two simple problems that had analytic solutions. It was found that the stability results provided in this paper were qualitatively very similar. thereby providing insight as to why a Crank-Nicolson approximation of the momentum equations is only conditionally, stable. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.
Resumo:
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider the energy levels of a hydrogen-like atom in the framework of theta-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S(1/2), 2P(1/2) and 2P(3/2) is lifted completely, such that new transition channels are allowed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A rationalization of the known difference between the (3,4)J(C4H1) and (3,4)J(C1H4) couplings transmitted mainly through the 7-bridge in norbornanone is presented in terms of the effects of hyperconjugative interactions involving the carbonyl group. Theoretical and experimental studies Of (3,4)J(CH) couplings were carried out in 3-endo- and 3-exo-X-2-norbornanone derivatives (X = Cl, Br) and in exo- and endo-2-noborneol compounds. Hyperconjugative interactions were studied with the natural bond orbital (NBO) method. Hyperconjugative interactions involving the carbonyl pi*c(2) =o and sigma*c(2) =o antibonding orbitals produce a decrease of three-bond contribution to both (3,4) J(C4H1) and (3,4)J(C1H4) couplings. However, the latter antibonding orbital also undergoes a strong sigma c(3)-c(4) ->sigma*c(2) =o interaction, which defines an additional coupling pathway for (3,4)J(C4H1) but not for (3,4)J(C1H4). This pathway is similar to that known for homoallylic couplings, the only difference being the nature of the intermediate antibonding orbital; i.e. for (3,4)J(C4H1) it is of sigma*-type, while in homoallylic couplings it is of pi*-type. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
This paper deals with asymptotic results on a multivariate ultrastructural errors-in-variables regression model with equation errors Sufficient conditions for attaining consistent estimators for model parameters are presented Asymptotic distributions for the line regression estimators are derived Applications to the elliptical class of distributions with two error assumptions are presented The model generalizes previous results aimed at univariate scenarios (C) 2010 Elsevier Inc All rights reserved
Resumo:
In this work an efficient third order non-linear finite difference scheme for solving adaptively hyperbolic systems of one-dimensional conservation laws is developed. The method is based oil applying to the solution of the differential equation an interpolating wavelet transform at each time step, generating a multilevel representation for the solution, which is thresholded and a sparse point representation is generated. The numerical fluxes obtained by a Lax-Friedrichs flux splitting are evaluated oil the sparse grid by an essentially non-oscillatory (ENO) approximation, which chooses the locally smoothest stencil among all the possibilities for each point of the sparse grid. The time evolution of the differential operator is done on this sparse representation by a total variation diminishing (TVD) Runge-Kutta method. Four classical examples of initial value problems for the Euler equations of gas dynamics are accurately solved and their sparse solutions are analyzed with respect to the threshold parameters, confirming the efficiency of the wavelet transform as an adaptive grid generation technique. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.
Resumo:
In this work we study, in the framework of Colombeau`s generalized functions, the Hamilton-Jacobi equation with a given initial condition. We have obtained theorems on existence of solutions and in some cases uniqueness. Our technique is adapted from the classical method of characteristics with a wide use of generalized functions. We were led also to obtain some general results on invertibility and also on ordinary differential equations of such generalized functions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.