Numerical prediction of three-dimensional time-dependent viscoelastic extrudate swell using differential and algebraic models


Autoria(s): MOMPEAN, G.; THAIS, L.; TOME, M. F.; CASTELO, A.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.

Universidade de Sao Paulo (USP, Brasil)

Universidade de São Paulo (USP)

Comité Français d´Evaluation de la Coopération Universitaire avec le Brésil (COFECUB)

Comite Francais d`Evaluation de la Cooperation Universitaire avec le Bresil (COFECUB, France)[Uc Ph 112/08]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Brazilian funding agency FAPESP - Fundacao de Amparo a pesquisa do Estado de Sao Paulo[04/16064-9]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Brazilian funding agency FAPESP - Fundacao de Amparo a pesquisa do Estado de Sao Paulo[07/07038-2]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Brazilian funding agency CNPq - Conselho Nacional de Desenvolvimento Cientifico e Tecnologico[304422/2007-0]

Brazilian funding agency CNPq - Conselho Nacional de Desenvolvimento Cientifico e Tecnologico[470764/2007-4]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação para a Ciência e a Tecnologia de Portugal (FCT)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Brazilian funding agency CAPES/FCT[226/09]

Identificador

COMPUTERS & FLUIDS, v.44, n.1, p.68-78, 2011

0045-7930

http://producao.usp.br/handle/BDPI/28888

10.1016/j.compfluid.2010.12.010

http://dx.doi.org/10.1016/j.compfluid.2010.12.010

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

Relação

Computers & Fluids

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #Extrudate swell #Three-dimensional free surface flows #Viscoelastic fluids #Algebraic viscoelastic model #Finite difference method #FREE-SURFACE FLOWS #CAPILLARY DIES #FLUID #EQUATION #SLIT #MELT #Computer Science, Interdisciplinary Applications #Mechanics
Tipo

article

original article

publishedVersion