Nonlinear Schrodinger equation with chaotic, random, and nonperiodic nonlinearity
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) CAPES FUNAPE-GO Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPQ FUNAPE-GO Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP |
Identificador |
PHYSICS LETTERS A, v.374, n.45, p.4594-4598, 2010 0375-9601 http://producao.usp.br/handle/BDPI/29256 10.1016/j.physleta.2010.09.037 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Physics Letters A |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #QUANTUM STOCHASTIC RESONANCE #BOSE-EINSTEIN CONDENSATE #FESHBACH RESONANCES #COLLISIONS #RB-85 #Physics, Multidisciplinary |
Tipo |
article original article publishedVersion |