69 resultados para MAXIMUM LIKELIHOOD ESTIMATOR
Resumo:
Phylogenetic analyses of chloroplast DNA sequences, morphology, and combined data have provided consistent support for many of the major branches within the angiosperm, clade Dipsacales. Here we use sequences from three mitochondrial loci to test the existing broad scale phylogeny and in an attempt to resolve several relationships that have remained uncertain. Parsimony, maximum likelihood, and Bayesian analyses of a combined mitochondrial data set recover trees broadly consistent with previous studies, although resolution and support are lower than in the largest chloroplast analyses. Combining chloroplast and mitochondrial data results in a generally well-resolved and very strongly supported topology but the previously recognized problem areas remain. To investigate why these relationships have been difficult to resolve we conducted a series of experiments using different data partitions and heterogeneous substitution models. Usually more complex modeling schemes are favored regardless of the partitions recognized but model choice had little effect on topology or support values. In contrast there are consistent but weakly supported differences in the topologies recovered from coding and non-coding matrices. These conflicts directly correspond to relationships that were poorly resolved in analyses of the full combined chloroplast-mitochondrial data set. We suggest incongruent signal has contributed to our inability to confidently resolve these problem areas. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The open vegetation corridor of South America is a region dominated by savanna biomes. It contains forests (i.e. riverine forests) that may act as corridors for rainforest specialists between the open vegetation corridor and its neighbouring biomes (i.e. the Amazonian and Atlantic forests). A prediction for this scenario is that populations of rainforest specialists in the open vegetation corridor and in the forested biomes show no significant genetic divergence. We addressed this hypothesis by studying plumage and genetic variation of the Planalto woodcreeper Dendrocolaptes platyrostris Spix (1824) (Aves: Furnariidae), a forest specialist that occurs in both open habitat and in the Atlantic forest. The study questions were: (1) is there any evidence of genetic continuity between populations of the open habitat and the Atlantic forest and (2) is plumage variation congruent with patterns of neutral genetic structure or with ecological factors related to habitat type? We used cytochrome b and mitochondrial DNA control region sequences to show that D. platyrostris is monophyletic and presents substantial intraspecific differentiation. We found two areas of plumage stability: one associated with Cerrado and the other associated with southern Atlantic Forest. Multiple Mantel tests showed that most of the plumage variation followed the transition of habitats but not phylogeographical gaps, suggesting that selection may be related to the evolution of the plumage of the species. The results were not compatible with the idea that forest specialists in the open vegetation corridor and in the Atlantic forest are linked at the population level because birds from each region were not part of the same genetic unit. Divergence in the presence of gene flow across the ecotone between both regions might explain our results. Also, our findings indicate that the southern Atlantic forest may have been significantly affected by Pleistocene climatic alteration, although such events did not cause local extinction of most taxa, as occurred in other regions of the globe where forests were significantly affected by global glaciations. Finally, our results neither support plumage stability areas, nor subspecies as full species. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103, 801-820.
Resumo:
The toucan genus Ramphastos (Piciformes: Ramphastidae) has been a model in the formulation of Neotropical paleobiogeographic hypotheses. Weckstein (2005) reported on the phylogenetic history of this genus based on three mitochondrial genes, but some relationships were weakly supported and one of the subspecies of R. vitellinus (citreolaemus) was unsampled. This study expands on Weckstein (2005) by adding more DNA sequence data (including a nuclear marker) and more samples, including R v. citreolaemus. Maximum parsimony, maximum likelihood, and Bayesian methods recovered similar trees, with nodes showing high support. A monophyletic R. vitellinus complex was strongly supported as the sister-group to R. brevis. The results also confirmed that the southeastern and northern populations of R. vitellinus ariel are paraphyletic. X v. citreolaemus is sister to the Amazonian subspecies of the vitellinus complex. Using three protein-coding genes (COI, cytochrome-b and ND2) and interval-calibrated nodes under a Bayesian relaxed-clock framework, we infer that ramphastid genera originated in the middle Miocene to early Pliocene, Ramphastos species originated between late Miocene and early Pleistocene, and intra-specific divergences took place throughout the Pleistocene. Parsimony-based reconstruction of ancestral areas indicated that evolution of the four trans-Andean Ramphastos taxa (R. v. citreolaemus, R. a. swainsonii, R. brevis and R. sulfuratus) was associated with four independent dispersals from the cis-Andean region. The last pulse of Andean uplift may have been important for the evolution of R. sulfuratus, whereas the origin of the other trans-Andean Ramphastos taxa is consistent with vicariance due to drying events in the lowland forests north of the Andes. Estimated rates of molecular evolution were higher than the ""standard"" bird rate of 2% substitutions/site/million years for two of the three genes analyzed (cytochrome-b and ND2). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Analysis of the phylogenetic relationships among trypanosomes from vertebrates and invertebrates disclosed a new lineage of trypanosomes circulating among anurans and sand flies that share the same ecotopes in Brazilian Amazonia. This assemblage of closely related trypanosomes was determined by comparing whole SSU rDNA sequences of anuran trypanosomes from the Brazilian biomes of Amazonia, the Pantanal, and the Atlantic Forest and from Europe, North America, and Africa, and from trypanosomes of sand flies from Amazonia. Phylogenetic trees based on maximum likelihood and parsimony corroborated the positioning of all new anuran trypanosomes in the aquatic clade but did not support the monophyly of anuran trypanosomes. However, all analyses always supported four major clades (An01-04) of anuran trypanosomes. Clade An04 is composed of trypanosomes from exotic anurans. Isolates in clades An01 and An02 were from Brazilian frogs and toads captured in the three biomes studied, Amazonia, the Pantanal and the Atlantic Forest. Clade An01 contains mostly isolates from Hylidae whereas clade An02 comprises mostly isolates from Bufonidae; and clade An03 contains trypanosomes from sand flies and anurans of Bufonidae, Leptodactylidae, and Leiuperidae exclusively from Amazonia. To our knowledge, this is the first study describing morphological and growth features, and molecular phylogenetic affiliation of trypanosomes from anurans and phlebotomines, incriminating these flies as invertebrate hosts and probably also as important vectors of Amazonian terrestrial anuran trypanosomes.
Resumo:
In this paper we introduce a parametric model for handling lifetime data where an early lifetime can be related to the infant-mortality failure or to the wear processes but we do not know which risk is responsible for the failure. The maximum likelihood approach and the sampling-based approach are used to get the inferences of interest. Some special cases of the proposed model are studied via Monte Carlo methods for size and power of hypothesis tests. To illustrate the proposed methodology, we introduce an example consisting of a real data set.
Resumo:
The substitution of missing values, also called imputation, is an important data preparation task for many domains. Ideally, the substitution of missing values should not insert biases into the dataset. This aspect has been usually assessed by some measures of the prediction capability of imputation methods. Such measures assume the simulation of missing entries for some attributes whose values are actually known. These artificially missing values are imputed and then compared with the original values. Although this evaluation is useful, it does not allow the influence of imputed values in the ultimate modelling task (e.g. in classification) to be inferred. We argue that imputation cannot be properly evaluated apart from the modelling task. Thus, alternative approaches are needed. This article elaborates on the influence of imputed values in classification. In particular, a practical procedure for estimating the inserted bias is described. As an additional contribution, we have used such a procedure to empirically illustrate the performance of three imputation methods (majority, naive Bayes and Bayesian networks) in three datasets. Three classifiers (decision tree, naive Bayes and nearest neighbours) have been used as modelling tools in our experiments. The achieved results illustrate a variety of situations that can take place in the data preparation practice.
Resumo:
In this paper we propose a new lifetime distribution which can handle bathtub-shaped unimodal increasing and decreasing hazard rate functions The model has three parameters and generalizes the exponential power distribution proposed by Smith and Bain (1975) with the inclusion of an additional shape parameter The maximum likelihood estimation procedure is discussed A small-scale simulation study examines the performance of the likelihood ratio statistics under small and moderate sized samples Three real datasets Illustrate the methodology (C) 2010 Elsevier B V All rights reserved
Resumo:
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.
Resumo:
In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved
A bivariate regression model for matched paired survival data: local influence and residual analysis
Resumo:
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.
Resumo:
The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.
Resumo:
In this work we propose and analyze nonlinear elliptical models for longitudinal data, which represent an alternative to gaussian models in the cases of heavy tails, for instance. The elliptical distributions may help to control the influence of the observations in the parameter estimates by naturally attributing different weights for each case. We consider random effects to introduce the within-group correlation and work with the marginal model without requiring numerical integration. An iterative algorithm to obtain maximum likelihood estimates for the parameters is presented, as well as diagnostic results based on residual distances and local influence [Cook, D., 1986. Assessment of local influence. journal of the Royal Statistical Society - Series B 48 (2), 133-169; Cook D., 1987. Influence assessment. journal of Applied Statistics 14 (2),117-131; Escobar, L.A., Meeker, W.Q., 1992, Assessing influence in regression analysis with censored data, Biometrics 48, 507-528]. As numerical illustration, we apply the obtained results to a kinetics longitudinal data set presented in [Vonesh, E.F., Carter, R.L., 1992. Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics 48, 1-17], which was analyzed under the assumption of normality. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. Next, we discuss the maximum likelihood estimation of the parameters of this cure rate survival model. Finally, we illustrate the usefulness of this model by applying it to a real cutaneous melanoma data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
For the first time, we introduce a class of transformed symmetric models to extend the Box and Cox models to more general symmetric models. The new class of models includes all symmetric continuous distributions with a possible non-linear structure for the mean and enables the fitting of a wide range of models to several data types. The proposed methods offer more flexible alternatives to Box-Cox or other existing procedures. We derive a very simple iterative process for fitting these models by maximum likelihood, whereas a direct unconditional maximization would be more difficult. We give simple formulae to estimate the parameter that indexes the transformation of the response variable and the moments of the original dependent variable which generalize previous published results. We discuss inference on the model parameters. The usefulness of the new class of models is illustrated in one application to a real dataset.