Transformed symmetric models


Autoria(s): CORDEIRO, Gauss M.; ANDRADE, Marinho G.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

For the first time, we introduce a class of transformed symmetric models to extend the Box and Cox models to more general symmetric models. The new class of models includes all symmetric continuous distributions with a possible non-linear structure for the mean and enables the fitting of a wide range of models to several data types. The proposed methods offer more flexible alternatives to Box-Cox or other existing procedures. We derive a very simple iterative process for fitting these models by maximum likelihood, whereas a direct unconditional maximization would be more difficult. We give simple formulae to estimate the parameter that indexes the transformation of the response variable and the moments of the original dependent variable which generalize previous published results. We discuss inference on the model parameters. The usefulness of the new class of models is illustrated in one application to a real dataset.

CAPES

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

STATISTICAL MODELLING, v.11, n.4, p.371-+, 2011

1471-082X

http://producao.usp.br/handle/BDPI/28948

10.1177/1471082X1001100405

http://dx.doi.org/10.1177/1471082X1001100405

Idioma(s)

eng

Publicador

SAGE PUBLICATIONS LTD

Relação

Statistical Modelling

Direitos

restrictedAccess

Copyright SAGE PUBLICATIONS LTD

Palavras-Chave #Box-Cox model #dispersion parameter #generalized linear model #maximum likelihood #symmetric distribution #transformation parameter #DISTRIBUTIONS #SERIES #Statistics & Probability
Tipo

article

original article

publishedVersion