Transformed symmetric models
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
For the first time, we introduce a class of transformed symmetric models to extend the Box and Cox models to more general symmetric models. The new class of models includes all symmetric continuous distributions with a possible non-linear structure for the mean and enables the fitting of a wide range of models to several data types. The proposed methods offer more flexible alternatives to Box-Cox or other existing procedures. We derive a very simple iterative process for fitting these models by maximum likelihood, whereas a direct unconditional maximization would be more difficult. We give simple formulae to estimate the parameter that indexes the transformation of the response variable and the moments of the original dependent variable which generalize previous published results. We discuss inference on the model parameters. The usefulness of the new class of models is illustrated in one application to a real dataset. CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
STATISTICAL MODELLING, v.11, n.4, p.371-+, 2011 1471-082X http://producao.usp.br/handle/BDPI/28948 10.1177/1471082X1001100405 |
Idioma(s) |
eng |
Publicador |
SAGE PUBLICATIONS LTD |
Relação |
Statistical Modelling |
Direitos |
restrictedAccess Copyright SAGE PUBLICATIONS LTD |
Palavras-Chave | #Box-Cox model #dispersion parameter #generalized linear model #maximum likelihood #symmetric distribution #transformation parameter #DISTRIBUTIONS #SERIES #Statistics & Probability |
Tipo |
article original article publishedVersion |