48 resultados para Abelian groups.
Resumo:
The control of molecular architectures may be essential to optimize materials properties for producing luminescent devices from polymers, especially in the blue region of the spectrum. In this Article, we report on the fabrication of Langmuir-Blodgett (LB) films of polyfluorene copolymers mixed with the phospholipid dimyristoyl phosphatidic acid (DMPA). The copolymers poly(9.9-dioetylfluorene)-co-phenylene (copolymer I) and poly(9,9-dioctylfluorene)-co-quaterphenylene) (copolymer 2) were synthesized via Suzuki reaction. Copolymer I could not form a monolayer on its own, but it yielded stable films when mixed with DMPA. In contrast, Langmuir monolayers could be formed from either the neat copolymer 2 or when mixed with DMPA. The surface pressure and surface potential measurements, in addition to Brewster angle microscopy, indicated that DMPA provided a suitable matrix for copolymer I to form a stable Langmuir film, amenable to transfer as LB films, while enhancing the ability of copolymer 2 to form LB films with enhanced emission, as indicated by fluorescence spectroscopy. Because a high emission was obtained with the mixed LB films and since the molecular-level interactions between the film components can be tuned by changing the experimental conditions to allow For further optimization, one may envisage applications of these films in optical devices such as organic light-emitting diodes (OLEDs).
Resumo:
The coastal plains of the States of Parana and Santa Catarina, in Southern Brazil, were first settled around 6000 B.P. by shellmound builders, a successful fisher-hunter-gatherer population that inhabited the coastal lowlands practically unchanged for almost five thousand years. Shellmounds were typically occupied as residential sites as well as cemeteries, and are usually associated with rich alimentary zones. Around 1200 B.P., the first evidence of ceramics brought from the interior is found in coastal areas, and together with ceramics there is a progressive abandonment of shellmound construction in favor of flat cold shallow sites. Here we consider if these changes were reflected in the postmarital residence practice of coastal groups, i.e., if the arrival or intensification of contact with groups from the interior resulted in changes in this aspect of social structure among the coastal groups. To test the postmarital residence practice we analyzed within-group variability ratios between males and females, following previous studies on the topic. and between-group, correlations between Mahalanobis distances and geographic distances. The results suggest that in the pre-ceramic series a matrilocal, postmarital residential system predominated, while in the ceramic period there was a shift toward patrilocality. This favors the hypothesis that the changes experienced by coastal groups after 1200 B.P. affected not only their economy and material culture, but important aspects of their sociopolitical organization as well.
Resumo:
We investigate the possibility of interpreting the degeneracy of the genetic code, i.e., the feature that different codons (base triplets) of DNA are transcribed into the same amino acid, as the result of a symmetry breaking process, in the context of finite groups. In the first part of this paper, we give the complete list of all codon representations (64-dimensional irreducible representations) of simple finite groups and their satellites (central extensions and extensions by outer automorphisms). In the second part, we analyze the branching rules for the codon representations found in the first part by computational methods, using a software package for computational group theory. The final result is a complete classification of the possible schemes, based on finite simple groups, that reproduce the multiplet structure of the genetic code. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hajnal and Juhasz proved that under CH there is a hereditarily separable, hereditarily normal topological group without non-trivial convergent sequences that is countably compact and not Lindelof. The example constructed is a topological subgroup H subset of 2(omega 1) that is an HFD with the following property (P) the projection of H onto every partial product 2(I) for I is an element of vertical bar omega(1)vertical bar(omega) is onto. Any such group has the necessary properties. We prove that if kappa is a cardinal of uncountable cofinality, then in the model obtained by forcing over a model of CH with the measure algebra on 2(kappa), there is an HFD topological group in 2(omega 1) which has property (P). Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Motivated in part by the study of Fadell-Neuwirth short exact sequences, we determine the lower central and derived series for the braid groups of the finitely-punctured sphere. For n >= 1, the class of m-string braid groups B(m)(S(2)\{x(1), ... , x(n)}) of the n-punctured sphere includes the usual Artin braid groups B(m) (for n = 1), those of the annulus, which are Artin groups of type B (for n = 2), and affine Artin groups of type (C) over tilde (for n = 3). We first consider the case n = 1. Motivated by the study of almost periodic solutions of algebraic equations with almost periodic coefficients, Gorin and Lin calculated the commutator subgroup of the Artin braid groups. We extend their results, and show that the lower central series (respectively, derived series) of B(m) is completely determined for all m is an element of N (respectively, for all m not equal 4). In the exceptional case m = 4, we obtain some higher elements of the derived series and its quotients. When n >= 2, we prove that the lower central series (respectively, derived series) of B(m)(S(2)\{x(1), ... , x(n)}) is constant from the commutator subgroup onwards for all m >= 3 (respectively, m >= 5). The case m = 1 is that of the free group of rank n - 1. The case n = 2 is of particular interest notably when m = 2 also. In this case, the commutator subgroup is a free group of infinite rank. We then go on to show that B(2)(S(2)\{x(1), x(2)}) admits various interpretations, as the Baumslag-Solitar group BS(2, 2), or as a one-relator group with non-trivial centre for example. We conclude from this latter fact that B(2)(S(2)\{x(1), x(2)}) is residually nilpotent, and that from the commutator subgroup onwards, its lower central series coincides with that of the free product Z(2) * Z. Further, its lower central series quotients Gamma(i)/Gamma(i+1) are direct sums of copies of Z(2), the number of summands being determined explicitly. In the case m >= 3 and n = 2, we obtain a presentation of the derived subgroup, from which we deduce its Abelianization. Finally, in the case n = 3, we obtain partial results for the derived series, and we prove that the lower central series quotients Gamma(i)/Gamma(i+1) are 2-elementary finitely-generated groups.
Resumo:
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.
Resumo:
Let D( m, n; k) be the semi-direct product of two finite cyclic groups Z/m = < x > and Z/n = < y >, where the action is given by yxy(-1) = x(k). In particular, this includes the dihedral groups D(2m). We calculate the automorphism group Aut (D(m, n; k)).
Resumo:
Cohomology groups H(s)(Z(n), Z(m)) are studied to describe all groups up to isomorphism which are (central) extensions of the cyclic group Z(n) by the Z(n)-module Z(m). Further, for each such a group the number of non-equivalent extensions is determined. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.
Resumo:
Let G be any of the (binary) icosahedral, generalized octahedral (tetrahedral) groups or their quotients by the center. We calculate the automorphism group Aut(G).
Resumo:
We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We show that if A is an abelian category satisfying certain mild conditions, then one can introduce the concept of a moduli space of (semi)stable objects which has the structure of a projective algebraic variety. This idea is applied to several important abelian categories in representation theory, like highest weight categories.
Resumo:
We classify groups G such that the unit group U-1 (ZG) is hypercentral. In the second part, we classify groups G whose modular group algebra has hyperbolic unit groups U-1 (KG).
Resumo:
The concept of taut submanifold of Euclidean space is due to Carter and West, and can be traced back to the work of Chern and Lashof on immersions with minimal total absolute curvature and the subsequent reformulation of that work by Kuiper in terms of critical point theory. In this paper, we classify the reducible representations of compact simple Lie groups, all of whose orbits are tautly embedded in Euclidean space, with respect to Z(2)-coefficients.
Resumo:
We develop and describe continuous and discrete transforms of class functions on a compact semisimple, but not simple, Lie group G as their expansions into series of special functions that are invariant under the action of the even subgroup of the Weyl group of G. We distinguish two cases of even Weyl groups-one is the direct product of even Weyl groups of simple components of G and the second is the full even Weyl group of G. The problem is rather simple in two dimensions. It is much richer in dimensions greater than two-we describe in detail E-transforms of semisimple Lie groups of rank 3.