TAUT REPRESENTATIONS OF COMPACT SIMPLE LIE GROUPS


Autoria(s): GORODSKI, Claudio
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

The concept of taut submanifold of Euclidean space is due to Carter and West, and can be traced back to the work of Chern and Lashof on immersions with minimal total absolute curvature and the subsequent reformulation of that work by Kuiper in terms of critical point theory. In this paper, we classify the reducible representations of compact simple Lie groups, all of whose orbits are tautly embedded in Euclidean space, with respect to Z(2)-coefficients.

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

ILLINOIS JOURNAL OF MATHEMATICS, v.52, n.1, p.121-143, 2008

0019-2082

http://producao.usp.br/handle/BDPI/30653

http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000266472000006&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord

Idioma(s)

eng

Publicador

UNIV ILLINOIS URBANA-CHAMPAIGN

Relação

Illinois Journal of Mathematics

Direitos

closedAccess

Copyright UNIV ILLINOIS URBANA-CHAMPAIGN

Palavras-Chave #DUPIN HYPERSURFACES #SUBMANIFOLDS #EMBEDDINGS #CLASSIFICATION #CURVATURE #SPACES #SETS #Mathematics
Tipo

article

original article

publishedVersion