TAUT REPRESENTATIONS OF COMPACT SIMPLE LIE GROUPS
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
The concept of taut submanifold of Euclidean space is due to Carter and West, and can be traced back to the work of Chern and Lashof on immersions with minimal total absolute curvature and the subsequent reformulation of that work by Kuiper in terms of critical point theory. In this paper, we classify the reducible representations of compact simple Lie groups, all of whose orbits are tautly embedded in Euclidean space, with respect to Z(2)-coefficients. FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
ILLINOIS JOURNAL OF MATHEMATICS, v.52, n.1, p.121-143, 2008 0019-2082 |
Idioma(s) |
eng |
Publicador |
UNIV ILLINOIS URBANA-CHAMPAIGN |
Relação |
Illinois Journal of Mathematics |
Direitos |
closedAccess Copyright UNIV ILLINOIS URBANA-CHAMPAIGN |
Palavras-Chave | #DUPIN HYPERSURFACES #SUBMANIFOLDS #EMBEDDINGS #CLASSIFICATION #CURVATURE #SPACES #SETS #Mathematics |
Tipo |
article original article publishedVersion |