283 resultados para Standard method
Resumo:
Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.
Resumo:
A CE method is described for the enantioselective analysis of propranolol (Prop) and 4-hydroxypropranolol (4-OH-Prop) in liquid Czapek medium with application in the study of the enantioselective biotransformation of Prop by endophytic fungi. The electrophoretic conditions previously optimized were as follows: an uncoated fused-silica capillary, 4%w/v carboxymethyl-beta-CD in 25 mmol/L triethylamine/phosphoric acid (H(3)PO(4)) buffer at pH 9 as running electrolyte and 17 kV of voltage. UV detection was carried out at 208 nm. Liquid-liquid extraction using diethyl ether: ethyl acetate (1:1 v/v) as extractor solvent was employed for sample preparation. The calibration curves were linear over the concentration range of 0.25-10.0 mu g/mL for each 4-OH-Prop enantiomer and 0.10-10.0 mu g/mL for each Prop enantiomer (r >= 0.995). Within-day and between-day relative standard deviations and relative errors for precision and accuracy were lower than 15% for all the enantiomers. Finally, the validated method was used to evaluate Prop biotransformation in its mammalian metabolite 4-OH-Prop by some selected endophytic fungi. The screening of five strains of endophytic fungi was performed and all of them could biotransform Prop to some extent. Specifically, Glomerella cingulata (VA1) biotransformed 47.8% of (-)-(S)-Prop to (-)-(S)-4-OH-Prop with no formation of (+)-(R)4-OH-Prop in 72 h of incubation.
Resumo:
A simple enantioselective method for the determination of praziquantel (PZQ) and trans-4-hydroxypraziquantel (4-OHPZQ) in human plasma was developed and validated by high-performance liquid chromatography/mass spectrometry. The plasma samples were prepared by liquid-liquid extraction using a mixture of methyl-tert-butylether/dichloromethane (2:1, v/v) as extraction solvent. The direct resolution of PZQ and 4-OHPZQ enantiomers was performed on a Chiralpak AD column using hexane-isopropanol (75:25, v/v) as the mobile phase. Diazepam was used as internal standard. The method described here is simple and reproducible. The quantitation limit of 1.25 ng/ml for each PZQ enantiomer and of 12.5 ng/ml for each 4-OHPZQ enantiomer permits the use of the method in studies investigating the kinetic disposition of a single dose of 1.5g racemic PZQ. Enantioselectivity in the kinetic disposition of PZQ and 4-OHPZQ was observed in the clinical study. with the demonstration of a higher proportion of the (+)-(S)-PZQ and (-)-(R)-4-OHPZQ enantiomers in plasma. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an analytical method for the rapid screening and identification of the phenolic constituents present in the polar extracts of different Lychnophora spp. using LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS. Compounds were identified based on UV, retention time, MS experiments and MS/MS of precursor ion or standard. On-line phytochemical investigation of Lychnophora spp. allowed for the identification of flavonoids, chlorogenic acid derivatives and lactones. Some of the observed compounds were for the first time identified in Lychnophora species in a fast analytical procedure. The data obtained here may be helpful to the investigation of polar constituents from other Lychnophora species.
Resumo:
A method for simultaneous determination of seven benzodiazepines (BZPs) (flunitrazepam, clonazepam, oxazepam, lorazepam, chlordiazepoxide, nordiazepam and diazepam using N-desalkylflurazepam as internal standard) in human plasma using liquid-liquid and solid-phase extractions followed by high-performance liquid chromatography (HPLC) is described. The analytes were separated employing a LC-18 DB column (250 mm x 4.6 mm, 5 mu m) at 35 degrees C under isocratic conditions using 5 mM KH(2)PO(4) buffer solution pH 6.0: methanol: diethyl ether (55:40:5, v/v/v) as mobile phase at a flow rate of 0.8 mL min(-1). UV detection was carried out at 245 nm. Employing LLE, the best conditions were achieved with double extraction of 0.5 mL, plasma using ethyl acetate and Na(2)HPO(4) pH 9.5 for pH adjusting. Employing SPE, the best conditions were achieved with 0.5 mL plasma plus 3 mL 0.1 M borate buffer pH 9.5, which were then passed through a C18 cartridge previously conditioned, washed for 3 times with these solvents: 3 mL 0.1 M borate buffer pH 9.5,4 mL Milli-Q water and 1 mL acetonitrile 5%, finally the BZPs elution was carried with diethyl ether: n-hexane: methanol (50:30:20). In both methods the solvent was evaporated at 40 degrees C under nitrogen flow. The validation parameters obtained in LLE were linearity range of 50-1200 ng mL(-1) plasma (r >= 0.9927), limits of quantification of 50 ng mL(-1) plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15%, and recovery above 65% for all BZPs. In SPE, the parameter obtained were linearity range of 30-1200 ng mL(-1) plasma (r >= 0.9900), limits of quantification of 30 ng mL(-1) plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15% and recovery above 55% for all BZPs. These extracting procedures followed by HPLC analysis showed their suitable applicability in order to examine one or more BZPs in human plasma. Moreover, it could be suggested that these procedures might be employed in various analytical applications, in special for toxicological/forensic analysis. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A simple, rapid and sensitive analytical procedure for the measurement of imiquimod in skin samples after in vitro penetration studies has been developed and validated. In vitro penetration studies were carried out in Franz diffusion cells with porcine skin. Tape stripping technique was used to separate the stratum corneum (SC) from the viable epidermis and dermis. Imiquimod was extracted from skin samples using a 7:3 (v/v) methanol:acetate buffer (100 mm, pH 4.0) solution and ultrasonication. Imiquimod was analyzed by H-PLC using C(8) column and UV detection at 242 ran. The mobile phase used was acetonitrile:acetate buffer (pH 4.0, 100 mM):diethylamine (30:69.85:0.15, v/v) with flow rate 1 mL/min. Imiquimod eluted at 4.1 min and the running time was limited to 6.0 min. The procedure was linear across the following concentration ranges: 100-2500 ng/mL for both SC and tape-stripped skin and 20-800 ng/mL for receptor solution. Intra-day and inter-day accuracy and precision values were lower than 20% at the limit of quantitation. The recovery values ranged from 80 to 100%. The method is adequate to assay imiquimod from skin samples, enabling the determination of the cutaneous penetration profile of uniquimod by in vitro studies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Due to differences in the functional quality of natural extracts, we have also faced differences in their effectiveness. So, it was intended to assess the antioxidant activity of natural extracts in order to attain their functional quality. It was observed that all the extracts (brown and green propolis, Ginkgo biloba and Isoflavin Beta (R)) and the standard used (quercetin) showed antioxidant activity in a dose-dependent manner with IC50 values ranging from 0.21 to 155.28 mu g mL(-1) (inhibition of lipid peroxidation and scavenging of the DPPH center dot assays). We observed a high correlation (r(2)= 0.9913) among the antioxidant methods; on the other hand, the antioxidant activity was not related to the polyphenol and flavonoid content. As the DPPH center dot assay is a fast method, presents low costs and even has a high correlation with other antioxidant methods, it could be applied as an additional parameter in the quality control of natural extracts.
Resumo:
The effects of some composition variables on the development of multiple emulsions by one-step method were evaluated and their morphology characterized. The formulations that remained stable during the period of the test were submitted to centrifugation and thermal stress tests. The stability and the morphology of multiple droplets were affected not only by the type and concentration of the surfactants employed, but also by the water/oil ratios used. The results suggest that the formation of multiple droplets could involve a combination of transitional and catastrophic phase inversions. The results provide improved knowledge about the one-step emulsification method, a simplified process to prepare multiple emulsions when compared to the two-steps method.
Resumo:
This paper reports a simple and reliable HPLC method to evaluate the influence of two currently available photostabilizers on cosmetic formulations containing combined UV-filters and vitamins A and E. Vitamins and UV-filters, widely encountered in products of daily use have to be routinely evaluated since photoinstability can lead to reductions in their efficacy and safety. UV-irradiated formulation samples were submitted to a procedure that included a reliable, precise and specific HPLC method employing a C18 column and detection at 325 and 235 nm. Methanol, isopropanol and water were the mobile phases in gradient elution. The method precision was between 0.28 and 5.07. The photostabilizers studied [diethylhexyl 2,6-naphthalate (DEHN) and benzotriazolyl dodecyl p-cresol (BTDC)], influenced the stability of octyl methoxycinnamate (OMC) associated with vitamins A and E. BTDC was considered the best photostabilizer to vitamins and OMC when the UV-filters were combined with both vitamins A and E. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Despite the necessity to differentiate chemical species of mercury in clinical specimens, there area limited number of methods for this purpose. Then, this paper describes a simple method for the determination of methylmercury and inorganic mercury in blood by using liquid chromatography with inductively coupled mass spectrometry (LC-ICP-MS) and a fast sample preparation procedure. Prior to analysis, blood (250 mu L) is accurately weighed into 15-mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCI was added to the samples following sonication for 15 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 5 min on a C18 reverse-phase column with a mobile phase containing 0.05% (v/v) mercaptoethanol, 0.4% (m/v) L-cysteine, 0.06 mol L(-1) ammonium acetate and 5% (v/v) methanol. The method detection limits were found to be 0.25 mu g L(-1) and 0.1 mu Lg L(-1) for inorganic mercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). The proposed method was also applied to the speciation of mercury in blood samples collected from fish-eating communities and from rats exposed to thimerosal. With the proposed method there is a considerable reduction of the time of sample preparation prior to speciation of Hg by LC-ICP-MS. Finally, after the application of the proposed method, we demonstrated an interesting in vivo ethylmercury conversion to inorganic mercury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A graphite furnace atomic absorption spectrometric method is proposed for the direct and simultaneous determination of Cd, Cu, and Se in human blood. Samples were diluted 1:10 (v/v) in 0.5% (v/v) HNO(3) + 0.5% (v/v) Triton X-100 solution. For 12 mu L injected sample volume + 5 mu L, of 1000 mg L(-1) Pd(NO(3))(2) + 3 mu L of 1000 mg L(-1) Mg(NO(3))(2), the calculated characteristic masses (mo) were 0.9 pg Cd, 16 pg Cu, and 39 pg Se, which are close to those mo values for single-element conditions for THGA furnace (1.3 pg Cd, 17 pg Cu, and 45 pg Se). Calibration curves with linear correlations better than 0.999 were obtained. The limits of detection (LOD) were 0.03 mu g L(-1) Cd, 0.075 mu g L(-1) Cu and 0.3 mu g L(-1) Se, and the relative standard deviations (n= 12) were 2.5%, 0.3%, and 1.5%, respectively. The method was applied for Cd, Cu, and Se determination in 10 human blood samples and the results were in agreement at the 95% confidence level with those obtained by inductively coupled plasma mass spectrometry. Concentrations of analytes in the selected blood samples varied from 1.7 to 3.2 mu g L(-1) Cd, 700 to 921.7 mu g L(-1) Cu, and from 68.6 to 350 mu g L(-1) Se. The accuracy of the proposed method was also evaluated by an addition-recovery experiment and recoveries of Cd, Cu, and Se added to blood samples ranged from 99-109%, 91-103%,and 93-103%, respectively.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
This paper describes a simple method for mercury speciation in seafood samples by LC-ICP-MS with a fast sample preparation procedure. Prior to analysis, mercury species were extracted from food samples with a solution containing mercaptoethanol, L-cysteine and HCl and sonication for 15 min. Separation of mercury species was accomplished in less than 5 min on a C8 reverse phase column with a mobile phase containing 0.05%-v/v mercaptoethanol, 0.4% m/v L-cysteine and 0.06 mol L(-1) ammonium acetate. The method detection limits were found to be 0.25, 0.20 and 0.1 ng g(-1) for inorganic mercury, ethylmercury and methylmercury, respectively. Method accuracy is traceable to Certified Reference Materials (DOLT-3 and DORM-3) from the National Research Council Canada (NRCC). With the proposed method there is a considerable reduction of the time of sample preparation. Finally, the method was applied for the speciation of mercury in seafood samples purchased from the Brazilian market. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A simple and fast method is described for simultaneous determination of methylmercury (MeHg), ethylmercury (Et-Hg) and inorganic mercury (Ino-Hg) in blood samples by using capillary gas chromatography-inductively coupled plasma mass spectrometry (GC-ICP-MS) after derivatization and alkaline digestion. Closed-vessel microwave assisted digestion conditions with tetramethylammonium hydroxide (TMAH) have been optimized. Derivatization by using ethylation and propylation procedures have also been evaluated and compared. The absolute detection limits (using a 1 mu L injection) obtained by GC-ICP-MS with ethylation were 40 fg for MeHg and Ino-Hg, respectively, and with propylation were 50, 20 and 50 fg for MeHg, Et-Hg and Ino-Hg, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). Additional validation is provided based on the comparison of results obtained for mercury speciation in blood samples with the proposed procedure and with a previously reported LC-ICP-MS method. With the new proposed procedure no tedious clean-up steps are required and a considerable improvement of the time of analysis was achieved compared to other methods using GC separation.
Resumo:
We developed a new method for the quantification of parasites in tissue. Trypanosoma cruzi strain CL parasites were genetically engineered to express the Escherichia coli beta-galactosidase gene, lacZ and this enzyme is able to catalyze a colorimetric reaction with chlorophenol red beta-d galactopyranoside (CPRG) as the substrate. The animals were infected with clone CL Brener strain B5 of T. cruzi and treated with benznidazole in order to verify the reduction in the number of parasites in tissue study by quantifying the enzyme beta-galactosidase. The assay demonstrates a reduction in the number of parasites in the groups treated. Thus, this test can be used to test other substances with the aim of verifying the effectiveness in the chronic phase of experimental Chagas` disease.