163 resultados para SIGMA
Resumo:
Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.
Resumo:
We study which topology have an immediate predecessor in the poset of Sigma(2) of Hausdorff topologies on set X. We show that certain classes of H-closed topologies, do have predecessors. and we give examples of second countable H-closed topologies which are not upper Sigma(2.)
Resumo:
Let F-sigma(lambda)vertical bar G vertical bar be a crossed product of a group G and the field F. We study the Lie properties of F-sigma(lambda)vertical bar G vertical bar in order to obtain a characterization of those crossed products which are upper (lower) Lie nilpotent and Lie (n, m)-Engel. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof.
Resumo:
Whenever P is a topological property, we say that a topological space is star P if whenever U is an open cover of X, there is a subspace A subset of X with property P such that X = St(A, U). We study the relationships of star P properties for P is an element of {Lindelof, sigma-compact, countable} with other Lindelof type properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Given an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This is a sequel of the work done on (strongly) monotonically monolithic spaces and their generalizations. We introduce the notion of monotonically kappa-monolithic space for any infinite cardinal kappa and present the relevant results. We show, among other things, that any sigma-product of monotonically kappa-monolithic spaces is monotonically kappa-monolithic for any infinite cardinal kappa; besides, it is consistent that any strongly monotonically omega-monolithic space with caliber omega(1) is second countable. We also study (strong) monotone kappa-monolithicity in linearly ordered spaces and subspaces of ordinals.
Resumo:
Multiconfigurational second-order perturbation theory (CASSCF//CASPT2) and quadruple-zeta ANO-RCC basis sets were employed to investigate the ground and low-lying electronic states of MoB and MoB(+). Spectroscopic constants, potential energy curves, wavefunctions, Mulliken population analyses, and ionization energies are given. The ground state of MoB is of X(6)Pi symmetry (R(e) = 1.968 angstrom, omega(e) = 664 cm(-1), and mu = 2.7 D), giving rise to a Omega = 7/2 ground state after including spin-orbit coupling. For MoB(+), the ground state is computed to be of X(7)Sigma(+) symmetry (R(e) = 2.224 angstrom, omega(e) = 141 cm(-1), and mu = 1.2 D), with an adiabatic ionization energy of 7.19 eV and a vertical one of 7.53 eV. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 3362-3370, 2011
Resumo:
In the present study, cadmium and lead in the muscle, lung, liver and kidney of dolphins (Sotalia guianensis and Stenella clymene) of the Bahia coast in the northwest of Brazil were determined by graphite furnace atomic absorption spectrometry. Samples were digested using a diluted oxidant mixture (HNO(3) + H(2)O(2)) with a microwave heating program performed in five steps. The optimized temperatures and chemical modifier for the pyrolysis and atomization were 700 degrees C, 1400 degrees C and Pd plus Mg for Cd, and 900 degrees C, 1800 degrees C and NH(4)H(2)PO(4) for Pb, respectively. Characteristic masses and limits of detections (n = 20, 3 sigma) for Cd and Pb were 1.6 and 9.0 pg and 0.82 ng g(-1) and 0.50 ng g(-1), respectively. Repeatability ranged from 0.87 to 8.22% for Cd and 4.31 to 8.09% for Pb. The found concentrations presented no statistical differences at the 95% confidence level when compared with the ICP OES methods. Addition and recovery tests were also performed and the results ranged between 87 and 112% for both elements. Samples of cetacean Dolphinidae (S. guianensis and S. clymene) were analyzed, and the higher concentrations ranged from 0.09 to 46.2 mu g g(-1) for Cd and 0.04 to 0.47 mu g g(-1) for Pb in liver, and from 0.133 to 277 mu g g(-1) for Cd in the kidney. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The electronic structure of the lowest-lying electronic states of W(2) were investigated at the CASPT2 level. The ground state is a X(1)Sigma(+)(g) state, followed by the a(3)Delta(u), b(3)Sigma(+)(u) and A(1)Delta(u) electronic states. Seven low-lying Omega-states were computed: (1)0(g)(+), (2)3(u), (3)2(u), (4)1(u), (5)0(u)(-), (6)1(u), and (7)2(u), with the ground state corresponding to the (1)0(g)(+)(X(1)Sigma(+)(g)) state. Comparison with the other VIB transition metal group dimers indicates a common pattern of electronic structure and spectroscopic properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The diazocarbene radical, CNN, and the ions CNN(+) and CNN(-) were investigated at a high level of theory. Very accurate structural parameters for the states X(3)Sigma(-) and A(3)Pi of CNN, and X(2)Pi of both CNN(+) and CNN(-) were obtained with the UCCSD(T) method using correlated-consistent basis functions with extrapolations to the complete basis set limit, with valence only and also with all electrons correlated. Harmonic and anharmonic frequencies were obtained for all species and the Renner parameter and average frequencies evaluated for the Pi states. At the UCCSD(T)/CBS(T-5) level of theory, Delta(f)H(0 K) = 138.89 kcal/mol and Delta(f)H(298 K) = 139.65 kcal/mol were obtained for diazocarbene; for the ionization potential and the electron affinity of CNN, 10.969 eV (252.95 kcal/mol), and 1.743 eV (40.19 kcal/mol), respectively, are predicted. Geometry optimization was also carried out with the CASSCF/MRCI/CBS(T-5) approach for the states X(3)Sigma(-) A(3)Pi, and a(1)Delta of CNN, and with the CASSCF/MRSDCI/aug-cc-pVTZ approach for the states b(1)Sigma(+), c(1)Pi, d(1)Sigma(-), and B(3)Sigma(-), and excitation energies (T(e)) evaluated. Vertical energies were calculated for 15 electronic states, thus improving on the accuracy of the five transitions already described, and allowing for a reliable overview of a manifold of other states, which is expected to guide future spectroscopic experiments. This study corroborates the experimental assignment for the vertical transition X (3)Sigma(-) <- E (3)Pi.
Resumo:
Multiconfiguration second-order perturbation theory, with the inclusion of relativistic effects and spin-orbit Coupling, was employed to investigate the nature of the ground and low-lying Lambda-S and Omega states of the TcN molecule. Spectroscopic constants, effective bond order, and potential energy curves for 13 low-lying Lambda-S states and 5 Omega states are given, The computed ground state of TcN is of Omega = 3 symmetry (R(e) = 1.605 angstrom and omega(e) = 1085 cm(-1)), originating mainly from the (3)Delta Lambda-S ground state. This result is contrasted with the nature of the ground state for other VIIB transtion-metal mononitrides, including X(3)Sigma(-) symmetry for MnN and Omega = 0(+) symmetry for ReN, derived also from a X(3)Sigma(-) state.
Resumo:
An all-in-one version of a capacitively coupled contactless conductivity detector is introduced. The absence of moving parts (potentiometers and connectors) makes it compact (6.5 cm(3)) and robust. A local oscillator, working at 1.1 MHz, was optimized to use capillaries of id from 20 to 100 lam. Low noise circuitry and a high-resolution analog-to-digital converter (ADC) (21 bits effective) grant good sensitivities for capillaries and background electrolytes currently used in capillary electrophoresis. The fixed frequency and amplitude of the signal generator is a drawback that is compensated by the steady calibration curves for conductivity. Another advantage is the possibility of determining the inner diameter of a capillary by reading the ADC when air and subsequently water flow through the capillary. The difference of ADC reading may be converted into the inner diameter by a calibration curve. This feature is granted by the 21-bit ADC, which eliminates the necessity of baseline compensation by hardware. In a typical application, the limits of detection based on the 3 sigma criterion (without baseline filtering) were 0.6, 0.4, 0.3, 0.5, 0.6, and 0.8 mu mol/L for K(+), Ba(2+), Ca(2+), Na(+), Mg(2+), and Li(+), respectively, which is comparable to other high-quality implementations of a capacitively coupled contactless conductivity detector.
Resumo:
A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X (4)Sigma(-) ground state, with an equilibrium bond distance of 2.073 angstrom, and a harmonic frequency of 516.2 cm(-1); it is followed closely by the states (2)Pi (R(e) = 2.081 angstrom, omega(e) = 639.6 cm(-1)) and (2)Sigma(-) (R(e) = 2.074 angstrom, omega(e) = 536.5 cm(-1)), at 502 and 1976 cm(-1), respectively. The other quartets investigated, A (4)Pi (R(e) = 1.991 angstrom, omega(e) = 555.3 cm(-1)) and B (4)Sigma(-) (R(e) = 2.758 angstrom, omega(e) = 292.2 cm(-1)) lie at 13 291 and 24 394 cm(-1), respectively. The remaining doublets ((2)Delta, (2)Sigma(+)(2) and (2)Pi(3)) all fall below 28 000 cm(-1). Avoided crossings between the (2)Sigma(+) states and between the (2)Pi states add an extra complexity to this manifold of states.
Resumo:
The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenylthio]propanamides Y-PhSCH(Me)C(O)N(OMe)Me (Y=OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by B3LYP/cc-pVDZ calculations of 3, indicated the existence of two gauche conformers (g(1) and g(2)), the g(1) conformer being the more stable and the less polar one (in gas phase and in solution). Both conformers are present in solution of the polar solvents (CH(2)Cl(2) and CH(3)CN) for 1-5 and in solution of the less polar solvent (CHCl(3)) for 1-4, while only the g(1) conformer is present in solution of non polar solvents (n-C(6)H(14) and CCl(4)) and in solution of CHCl(3) for 5. NBO analysis shows that both the sigma(C-S) -> pi*(C=O) (hyperconjugative) and the pi(C=O) -> sigma*(C-S) orbital interactions contribute almost to the same extent for the stabilization of g(1) and g(2) conformers. The pi*(C=O) -> sigma*(C-S), n(S) -> pi*(C=O) and the n(S) -> pi*(C=O) orbital interactions stabilize more the g(1) conformer than the g(2) one. Moreover, the suitable geometry of the g(1) conformer leads to its stabilization through the LP(O2) -> sigma*(C8-H11) orbital interaction (hydrogen bond) along with the strong O([CO])(delta-) center dot center dot center dot H([O-Ph])(delta+) electrostatic interaction. On the other hand, the appropriate geometry of the g(2) conformer leads to its stabilization by the LP(O22) -> sigma*(C9-H13) orbital interaction (hydrogen bond) along with the weak O([OMe])(delta-) center dot center dot center dot H([o`-Ph])(delta+) electrostatic static interaction. As for the 4`-nitro derivative 5 the ortho-phenyl hydrogen atom becomes more acidic, leading to a stronger O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) interaction and, thus, into a larger stabilization of the g(1) conformer in the whole series. This trend is responsible for the unique IR carbonyl band in CHCl(3) solution of 5. The larger occupancy of the pi*(C=O) orbital of the g(1) conformer relative to that of the g(2) conformer, along with the O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) electrostatic interaction (hydrogen bond) justifies the lower carbonyl frequency of the g(1) conformer with respect to the g(2) one, in gas phase and in solution. (C) 2008 Elsevier B.V. All rights reserved.