WHICH TOPOLOGIES HAVE IMMEDIATE PREDECESSORS IN THE POSET OF HAUSDORFF TOPOLOGIES?
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
We study which topology have an immediate predecessor in the poset of Sigma(2) of Hausdorff topologies on set X. We show that certain classes of H-closed topologies, do have predecessors. and we give examples of second countable H-closed topologies which are not upper Sigma(2.) Programa Integral de Fortalecimiento Institucional (PIFI) Programa Integral de Fortalecimiento Institucional (PIFI)[34536-55] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo ( Brasil) |
Identificador |
HOUSTON JOURNAL OF MATHEMATICS, v.35, n.1, p.149-158, 2009 0362-1588 |
Idioma(s) |
eng |
Publicador |
UNIV HOUSTON |
Relação |
Houston Journal of Mathematics |
Direitos |
closedAccess Copyright UNIV HOUSTON |
Palavras-Chave | #Lattice of T(1)-topologies #poset of Hausdorff topologies #upper topology #submaximal space #minimal Hausdorff space #H-closed space #dispersed space #LATTICE #T1-TOPOLOGIES #Mathematics |
Tipo |
article original article publishedVersion |