WHICH TOPOLOGIES HAVE IMMEDIATE PREDECESSORS IN THE POSET OF HAUSDORFF TOPOLOGIES?


Autoria(s): ALAS, Ofelia T.; TKACHENKO, Mikhail G.; WILSON, Richard G.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

We study which topology have an immediate predecessor in the poset of Sigma(2) of Hausdorff topologies on set X. We show that certain classes of H-closed topologies, do have predecessors. and we give examples of second countable H-closed topologies which are not upper Sigma(2.)

Programa Integral de Fortalecimiento Institucional (PIFI)

Programa Integral de Fortalecimiento Institucional (PIFI)[34536-55]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo ( Brasil)

Identificador

HOUSTON JOURNAL OF MATHEMATICS, v.35, n.1, p.149-158, 2009

0362-1588

http://producao.usp.br/handle/BDPI/30611

http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000265193200013&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord

Idioma(s)

eng

Publicador

UNIV HOUSTON

Relação

Houston Journal of Mathematics

Direitos

closedAccess

Copyright UNIV HOUSTON

Palavras-Chave #Lattice of T(1)-topologies #poset of Hausdorff topologies #upper topology #submaximal space #minimal Hausdorff space #H-closed space #dispersed space #LATTICE #T1-TOPOLOGIES #Mathematics
Tipo

article

original article

publishedVersion