7 resultados para Zeta function, Calabi-Yau Differential equation, Frobenius Polynomial
em Universidad de Alicante
Resumo:
In this paper, we prove that infinite-dimensional vector spaces of α-dense curves are generated by means of the functional equations f(x)+f(2x)+⋯+f(nx)=0, with n≥2, which are related to the partial sums of the Riemann zeta function. These curves α-densify a large class of compact sets of the plane for arbitrary small α, extending the known result that this holds for the cases n=2,3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the nth power of the density approaches the Jordan content of the compact set which the curve densifies.
Resumo:
This paper proves that the real projection of each simple zero of any partial sum of the Riemann zeta function ζn(s):=∑nk=11ks,n>2 , is an accumulation point of the set {Res : ζ n (s) = 0}.
Resumo:
In this paper, we introduce a formula for the exact number of zeros of every partial sum of the Riemann zeta function inside infinitely many rectangles of the critical strips where they are situated.
Resumo:
This paper proves that every zero of any n th , n ≥ 2, partial sum of the Riemann zeta function provides a vector space of basic solutions of the functional equation f(x)+f(2x)+⋯+f(nx)=0,x∈R . The continuity of the solutions depends on the sign of the real part of each zero.
Resumo:
In this work we prensent an analysis of non-slanted reflection gratings by using exact solution of the second order differential equation derived from Maxwell equations, in terms of Mathieu functions. The results obtained by using this method will be compared to those obtained by using the well known Kogelnik's Coupled Wave Theory which predicts with great accuracy the response of the efficieny of the zero and first order for volume phase gratings, for both reflection and transmission gratings.
Resumo:
We give a partition of the critical strip, associated with each partial sum 1 + 2z + ... + nz of the Riemann zeta function for Re z < −1, formed by infinitely many rectangles for which a formula allows us to count the number of its zeros inside each of them with an error, at most, of two zeros. A generalization of this formula is also given to a large class of almost-periodic functions with bounded spectrum.
Resumo:
In an open system, each disequilibrium causes a force. Each force causes a flow process, these being represented by a flow variable formally written as an equation called flow equation, and if each flow tends to equilibrate the system, these equations mathematically represent the tendency to that equilibrium. In this paper, the authors, based on the concepts of forces and conjugated fluxes and dissipation function developed by Onsager and Prigogine, they expose the following hypothesis: Is replaced in Prigogine’s Theorem the flow by its equation or by a flow orbital considering conjugate force as a gradient. This allows to obtain a dissipation function for each flow equation and a function of orbital dissipation.