97 resultados para Computer arithmetic and logic units

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the implementation of a TMR (Triple Modular Redundant) microprocessor system on a FPGA. The system exhibits true redundancy in that three instances of the same processor system (both software and hardware) are executed in parallel. The described system uses software to control external peripherals and a voter is used to output correct results. An error indication is asserted whenever two of the three outputs match or all three outputs disagree. The software has been implemented to conform to a particular safety critical coding guideline/standard which is popular in industry. The system was verified by injecting various faults into it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an asymmetric multi-processor SoC architecture, featuring a master CPU running uClinux, and multiple loosely-coupled slave CPUs running real-time threads assigned by the master CPU. Real-time SoC architectures often demand a compromise between a generic platform for different applications, and application-specific customizations to achieve performance requirements. Our proposed architecture offers a generic platform running a conventional embedded operating system providing a traditional software-oriented development approach, while multiple slave CPUs act as a dedicated independent real-time threads execution unit running in parallel of master CPU to achieve performance requirements. In this paper, the architecture is described, including the application / threading development environment. The performance of the architecture with several standard benchmark routines is also analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since Z, being a state-based language, describes a system in terms of its state and potential state changes, it is natural to want to describe properties of a specified system also in terms of its state. One means of doing this is to use Linear Temporal Logic (LTL) in which properties about the state of a system over time can be captured. This, however, raises the question of whether these properties are preserved under refinement. Refinement is observation preserving and the state of a specified system is regarded as internal and, hence, non-observable. In this paper, we investigate this issue by addressing the following questions. Given that a Z specification A is refined by a Z specification C, and that P is a temporal logic property which holds for A, what temporal logic property Q can we deduce holds for C? Furthermore, under what circumstances does the property Q preserve the intended meaning of the property P? The paper answers these questions for LTL, but the approach could also be applied to other temporal logics over states such as CTL and the mgr-calculus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To validate the WOMAC 3.1 in a touch screen computer format, which applies each question as a cartoon in writing and in speech (QUALITOUCH method), and to assess patient acceptance of the computer touch screen version. Methods: The paper and computer formats of WOMAC 3.1 were applied in random order to 53 subjects with hip or knee osteoarthritis. The mean age of the subjects was 64 years ( range 45 to 83), 60% were male, 53% were 65 years or older, and 53% used computers at home or at work. Agreement between formats was assessed by intraclass correlation coefficients (ICCs). Preferences were assessed with a supplementary questionnaire. Results: ICCs between formats were 0.92 (95% confidence interval, 0.87 to 0.96) for pain; 0.94 (0.90 to 0.97) for stiffness, and 0.96 ( 0.94 to 0.98) for function. ICCs were similar in men and women, in subjects with or without previous computer experience, and in subjects below or above age 65. The computer format was found easier to use by 26% of the subjects, the paper format by 8%, and 66% were undecided. Overall, 53% of subjects preferred the computer format, while 9% preferred the paper format, and 38% were undecided. Conclusion: The computer format of the WOMAC 3.1 is a reliable assessment tool. Agreement between computer and paper formats was independent of computer experience, age, or sex. Thus the computer format may help improve patient follow up by meeting patients' preferences and providing immediate results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.