74 resultados para POLYCRYSTALLINE TIO2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel CVD WSi2 technology with low series and contact resistance in SiGe HBTs was achieved. Specific contact resistance to Si1-xGex with 0

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of electron-phonon scattering and grain boundary scattering to the mid-IR (lambda = 3.392 mum) properties of An has been assessed by examining both bulk, single crystal samples-Au(1 1 1) and Au(1 1 0)-and thin film, polycrystalline An samples at 300 K and 100 K by means of surface plasmon polariton excitation. The investigation constitutes a stringent test for the in-vacuo Otto-configuration prism coupler used to perform the measurements, illustrating its strengths and limitations. Analysis of the optical response is guided by a physically based interpretation of the Drude model. Relative to the reference case of single crystal Au at 100 K (epsilon = - 568 + i17.5), raising the temperature to 300 K causes increased electron-phonon scattering that accounts for a reduction of similar to40 nm in the electron mean free path. Comparison of a polycrystalline sample to the reference case determines a mean free path due to grain boundary scattering of similar to 17 nm, corresponding to about half the mean grain size as determined from atomic force microscopy and indicating a high reflectance coefficient for the An grain boundaries. An analysis combining consideration of grain boundary scattering and the inclusion of a small percentage of voids in the polycrystalline film by means of an effective medium model indicates a value for the grain boundary reflection coefficient in the range 0.55-0.71. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When operated with a metallic tip and sample the scanning tunnelling microscope constitutes a nanoscale, plasmonic light source yielding broadband emission up to a photon energy determined by the applied bias. The emission is due to tunnelling electron excitation and subsequent radiative decay of localized plasmon modes, which can be on the lateral scale of a single metal grain (similar to 25 nm) or less. For a Au-tip/Au-polycrystalline sample under ambient conditions it is found that the intensity and spectral content of the emitted light are not dependent on the lateral grain dimension, but are predominantly determined by the tip geometry. However, the intensity increases strongly with increasing film thickness (grain depth) up to 20-25 nm or approximately the skin depth of the Au film. Photon maps can show less emissive grains and two classes of this occurrence are distinguished. The first is geometrical in origin - a double-tip structure in this case - while the second is due to a contamination-induced lowering of the local work function that causes the tunnel gap to increase. It is suggested that differences in work-function lowering between grains presenting different crystalline facets, combined with an exponential decay in emitted light intensity with tip - sample distance, leads to grain contrast. These results are relevant to tip-enhanced Raman scattering and the fabrication of micro/nano-scale planar, light-emitting tunnel devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Au catalysis has been one of the hottest topics in chemistry in the last 10 years or so. How O-2 is supplied and what role water plays in CO oxidation are the two challenging issues in the field at the moment. In this study, using density functional theory we show that these two issues are in fact related to each other. The following observations are revealed: (i) water that can dissociate readily into OH groups can facilitate O-2 adsorption on TiO2; (ii) the effect of OH group on the O-2 adsorption is surprisingly long-ranged; and (iii) O-2 can also diffuse along the channel of Ti (5c) atoms on TiO2(1 10), and this may well be the rate-limiting step for the CO oxidation. We provide direct evidence that O-2 is supplied by O-2 adsorption on TiO2 in the presence of OH and can diffuse to the interface of Au/TiO2 to participate in CO oxidation. Furthermore, the physical origin of the water effects on Au catalysis has been identified by electronic structure analyses: There is a charge transfer from TiO2 in the presence of OH to O-2, and the O-2 adsorption energy depends linearly on the 02 charge. These results are of importance to understand water effects in general in heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the liquid-phase hydrogenation of citral (3,7-dimethyl-2,6-octadienal) on Au/TiO2 and Pt-Sn/TiO2 thin films was studied in the temperature range 313-353 K and citral concentrations of 0.25-10.0 mol m(-3). The thin films were deposited onto the inner walls of silica capillaries with internal diameter of 250 mu m. First-order dependence on hydrogen pressure and near zero order dependence on citral concentration were observed for the initial rate of citral hydrogenation over the Pt-Sn/TiO2 and Au/TiO2 thin films. The Au/TiO2 catalyst prevents citronellal formation. The highest yield of unsaturated alcohols was obtained on the Pt-Sn/TiO2 film at a reaction temperature of 343 K, liquid residence time of 30 min and a citral conversion of 99%. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, Cu-63 nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO2 catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO2 at 120 degrees C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO2 at 140 degrees C, corresponding to an initial reaction rate of 104 mmol g(cat)(-1) s(-1). The activation energy on the Cu/mesoporous TiO2 catalyst was found to be (144 +/- 5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123 +/- 3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO2 support (75 +/- 2 kJ mol(-1)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+ ions have a detrimental effect on the photocatalytic activity of thin sot gel films deposited on soda lime glass due to their diffusion into the film during the calcination process. Given that the content of sodium in glass substrate might be the crucial parameter in determining the activity of a photocatalyst, the aim of the present work was the comparison of the photoinduced properties of a thin TiO2 film prepared on three different glass substrates namely on quartz (Q) glass, borosilicate (BS) glass and soda lime (SL) glass which have different sodium content. The prepared layers were characterised by X-ray diffraction and UV-vis spectroscopy. The diffusion of Na+ from the substrate into the layers was determined by Glow Discharge Atomic Emission Spectroscopy. The photocatalytic activities of the films were assessed using two model pollutant test systems (resazurin/resorufin ink and stearic acid film), which appeared to correlate reasonably well. It was observed that TiO2 layer on SL glass has a brookite crystalline structure while the TiO2 layer on BS and Q glass has an anatase crystalline structure. On the other hand, the photodegradation of the model dye on TiO2 films deposited on Q and BS glass is about an order higher than on SL glass. The low sodium content of BS glass makes it the most suitable substrate for the deposition of photoactive sol gel TiO2 films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An indicator ink based on the redox dye 2,6-dichloroindophenol ( DCIP) is described, which allows the rapid assessment of the activity of thin, commercial photocatalytic films, such as Activ. The ink works via a photoreductive mechanism, DCIP being reduced to dihydro-DCIP within ca. 7.5 minutes exposure to UVA irradiation of moderate intensity ( ca. 4.8mW cm(-2)). The kinetics of photoreduction are found to be independent of the level of dye present in the ink formulation, but are highly sensitive to the level of glycerol. This latter observation may be associated with a solvatochromic effect, whereby the microenvironment in which the dye finds itself and, as a consequence, its reactivity is altered significantly by small changes in the glycerol content. The kinetics of photoreduction also appear linearly dependent on the UVA light intensity with an observed quantum efficiency of ca. 1.8 x 10(-3). Copyright (C) 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thick (4 mu m) films of anatase titania are used to photocatalyze the removal of deposited films of amorphous sulfur, similar to 2.8 mu m, thick and under moderate illumination conditions (I = 5.6 mW cm(-2)) on the open bench the process is complete within similar to 8 or 18 h using UVC or UVA light, respectively. Using UVA light, 96% of the product of the photocatalytic removal of the film of sulfur is sulfur dioxide, SO2. The photonic efficiency of this process is similar to 0.16%, which is much higher (> 15 times) than that of the removal of soot by the same films, under similar experimental conditions. In contrast to the open bench work, in a closed system the photocatalytic activity of a titania film toward the removal of sulfur decreased with repeated use, due to the accumulation of sulfuric acid on its surface generated by the subsequent photocatalytic oxidation of the initial product, SO2. The H2SO4-inactivated films are regenerated by soaking in water. The problems of using titania films to remove SO2 from a gaseous environment are discussed briefly.