22 resultados para Control Architecture
Resumo:
Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks’ QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network
management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the
prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.
Resumo:
A common feature of the mammalian septin gene family is complex genomic architecture with multiple alternate splice variants. Septin 9 has 18 distinct transcripts encoding 15 polypeptides, with two transcripts (SEPT9_v4 and v4*) encoding the same polypeptide. We have previously reported that the ratio of these distinct transcripts is altered in neoplasia, with the v4 transcript being the usual form in normal cells but v4* becoming predominant in tumours. This led us to ask what the functional differences between these two transcripts might be. The 5'-UTRs of v4 and v4* have distinct 5' ends encoded by exons 1 beta (v4) and 1 zeta and 2 (v4*) and a common 3' region and initiating ATG encoded within exon 3. Here we show that the two mRNAs are translated with different efficiencies and that cellular stress can alter this. A putative internal ribosome entry site can be identified in the common region of the v4 and v4* 5'-UTRs and translation is modulated by an upstream open-reading frame in the unique region of the v4 5'-UTR. Germline mutations in hereditary neuralgic amyotrophy (HNA) map to the region which is common to the two UTRs. These mutations dramatically enhance the translational efficiency of the v4 5'-UTR, leading to elevated SEPT9_v4 protein under hypoxic conditions. Our data provide a mechanistic insight into how the HNA mutations can alter the fine control of SEPT9_v4 protein and its regulation under physiologically relevant conditions and are consistent with the episodic and stress-induced nature of the clinical features of HNA.
Resumo:
Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.
Resumo:
A new domain-specific, reconfigurable system-on-a-chip (SoC) architecture is proposed for video motion estimation. This has been designed to cover most of the common block-based video coding standards, including MPEG-2, MPEG-4, H.264, WMV-9 and AVS. The architecture exhibits simple control, high throughput and relatively low hardware cost when compared with existing circuits. It can also easily handle flexible search ranges without any increase in silicon area and can be configured prior to the start of the motion estimation process for a specific standard. The computational rates achieved make the circuit suitable for high-end video processing applications, such as HDTV. Silicon design studies indicate that circuits based on this approach incur only a relatively small penalty in terms of power dissipation and silicon area when compared with implementations for specific standards. Indeed, the cost/performance achieved exceeds that of existing but specific solutions and greatly exceeds that of general purpose field programmable gate array (FPGA) designs.
Resumo:
In this paper, we present a Bayesian approach to estimate a chromosome and a disorder network from the Online Mendelian Inheritance in Man (OMIM) database. In contrast to other approaches, we obtain statistic rather than deterministic networks enabling a parametric control in the uncertainty of the underlying disorder-disease gene associations contained in the OMIM, on which the networks are based. From a structural investigation of the chromosome network, we identify three chromosome subgroups that reflect architectural differences in chromosome-disorder associations that are predictively exploitable for a functional analysis of diseases.
Resumo:
In recent years, several phenomenological dynamical models have been formulated that describe how perceptual variables are incorporated in the control of motor variables. We call these short-route models as they do not address how perception-action patterns might be constrained by the dynamical properties of the sensory, neural and musculoskeletal subsystems of the human action system. As an alternative, we advocate a long-route modelling approach in which the dynamics of these subsystems are explicitly addressed and integrated to reproduce interceptive actions. The approach is exemplified through a discussion of a recently developed model for interceptive actions consisting of a neural network architecture for the online generation of motor outflow commands, based on time-to-contact information and information about the relative positions and velocities of hand and ball. This network is shown to be consistent with both behavioural and neurophysiological data. Finally, some problems are discussed with regard to the question of how the motor outflow commands (i.e. the intended movement) might be modulated in view of the musculoskeletal dynamics.
Resumo:
A high-performance VLSI architecture to perform combined multiply-accumulate, divide, and square root operations is proposed. The circuit is highly regular, requires only minimal control, and can be reconfigured for every cycle. The execution time for each operation is the same. The combination of redundancy and pipelining results in a throughput independent of the wordsize of the array. With current CMOS technology, throughput rates in excess of 80 million operations per second are achievable.
Resumo:
In this paper, a new reconfigurable multi-standard architecture is introduced for integer-pixel motion estimation and a standard-cell based chip design study is presented. This has been designed to cover most of the common block-based video compression standards, including MPEG-2, MPEG-4, H.263, H.264, AVS and WMV-9. The architecture exhibits simpler control, high throughput and relative low hardware cost and highly competitive when compared with excising designs for specific video standards. It can also, through the use of control signals, be dynamically reconfigured at run-time to accommodate different system constraint such as the trade-off in power dissipation and video-quality. The computational rates achieved make the circuit suitable for high end video processing applications. Silicon design studies indicate that circuits based on this approach incur only a relatively small penalty in terms of power dissipation and silicon area when compared with implementations for specific standards.
Resumo:
This paper presents a framework for context-driven policy-based QoS control and end-to-end resource management in converged next generation networks. The Converged Networks QoS Framework (CNQF) is being developed within the IU-ATC project, and comprises distributed functional entities whose instances co-ordinate the converged network infrastructure to facilitate scalable and efficient end-to-end QoS management. The CNQF design leverages aspects of TISPAN, IETF and 3GPP policy-based management architectures whilst also introducing important innovative extensions to support context-aware QoS control in converged networks. The framework architecture is presented and its functionalities and operation in specific application scenarios are described.
Resumo:
A new domain-specific reconfigurable sub-pixel interpolation architecture for multi-standard video Motion Estimation (ME) is presented. The mixed use of parallel and serial-input FIR filters achieves high throughput rate and efficient silicon utilisation. Flexibility has been achieved by using a multiplexed reconfigurable data-path controlled by a selection signal. Silicon design studies show that this can be implemented using 34.8K gates with area and performance that compares very favourably with existing fixed solutions based solely on the H.264 standard. ©2008 IEEE.
Resumo:
Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.