12 resultados para Higiene das mãos

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germanium (Ge) does not grow a suitable oxide for MOS devices. The Ge/dielectric interface is of prime importance to the operation of photo-detectors and scaled MOSTs. Therefore there is a requirement for deposited or bonded dielectric materials. MOS capacitors have been formed on germanium substrates with three different dielectric materials. Firstly, a thermally grown and bonded silicon dioxide (SiO2) layer, secondly, SiO2 deposited by atmospheric pressure CVD ‘silox’, and thirdly a hafnium oxide (HfO2) high-k dielectric deposited by atomic layer deposition (ALD). Ge wafers used were p-type 1 0 0 2 O cm. C–V measurements have been made on all three types of capacitors to assess the interface quality. ALD HfO2 and silox both display acceptable C–V characteristics. Threshold voltage and maximum and minimum capacitance values closely match expected values found through calculation. However, the bonded SiO2 has non-ideal C–V characteristics, revealing the presence of a high density of interface states. A H2/N2 post metal anneal has a detrimental effect on C–V characteristics of HfO2 and silox dielectrics, causing a shift in the threshold voltage and rise in the minimum capacitance value. In the case of hafnium dioxide, capacitor properties can be improved by performing a plasma nitridation of the Ge surface prior to dielectric deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides valuable design insights for optimizing device parameters for nanoscale planar and vertical SOI MOSFETs. The suitability of nanoscale non-planar FinFETs and classical planar single and double gate SOI MOSFETs for rf applications is examined via extensive 3D device simulations and detailed interpretation. The origin of higher parasitic capacitance in FinFETs, compared to planar MOSFETs is examined. RF figures of merit for planar and vertical MOS devices are compared, based on layout-area calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study second-harmonic generation in h-BN and MoS$_2$ monolayers using a novel \emph{ab initio} approach based on Many-body theory. We show that electron-hole interaction doubles the signal intensity at the excitonic resonances with respect to the contribution from independent electronic transitions. This implies that electron-hole interaction is essential to describe second-harmonic generation in those materials. We argue that this finding is general for nonlinear optical properties in nanostructures and that the present methodology is the key to disclose these effects.