273 resultados para Moldenke, Harold N. (Harold Norman), 1909-
Resumo:
Background: Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology: We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset.
Resumo:
We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P = 1 × 10(-5). We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10(-17); including ADGC data, meta P = 5.0 × 10(-21)) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10(-14); including ADGC data, meta P = 1.2 × 10(-16)) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10(-4); including ADGC data, meta P = 8.6 × 10(-9)), CD33 (GERAD+, P = 2.2 × 10(-4); including ADGC data, meta P = 1.6 × 10(-9)) and EPHA1 (GERAD+, P = 3.4 × 10(-4); including ADGC data, meta P = 6.0 × 10(-10)).
Resumo:
The purpose of this paper is to review recent developments in the design and fabrication of Frequency Selective Surfaces (FSS) which operate above 300 GHz. These structures act as free space electromagnetic filters and as such provide passive remote sensing instruments with multispectral capability by separating the scene radiation into separate frequency channels. Significant advances in computational electromagnetics, precision micromachining technology and metrology have been employed to create state of the art FSS which enable high sensitivity receivers to detect weak molecular emissions at THz wavelengths. This new class of quasi-optical filter exhibits an insertion loss
Resumo:
Silicon on Insulator (SOI) substrates offer a promising platform for monolithic high energy physics detectors with integrated read-out electronics and pixel diodes. This paper describes the fabrication and characterisation of specially-configured SOI substrates using improved bonded wafer ion split and grind/polish technologies. The crucial interface between the high resistivity handle silicon and the SOI buried oxide has been characterised using both pixel diodes and circular geometry MOS transistors. Pixel diode breakdown voltages were typically greater than 100V and average leakage current densities at 70 V were only 55 nA/ sq cm. MOS transistors subjected to 24 GeV proton irradiation showed an increased SOI buried oxide trapped charge of only 3.45x1011cn-2 for a dose of 2.7Mrad
Resumo:
Silicon-on-sapphire (SOS) substrates have been proven to offer significant advantages in the integration of passive and active devices in RF circuits. Germanium on insulator technology is a candidate for future higher performance circuits. Thus the advantages of employing a low loss dielectric substrate other than a silicon-dioxide layer on silicon will be even greater. This paper covers the production of germanium on sapphire (GeOS) substrates by wafer bonding. The quality of the germanium back interface is studied and a tungsten self-aligned gate process MOST process has been developed. High low field mobilities of 450-500 cm2/V-s have been achieved for p-channel MOSTs produced on GeOS substrates. Thick germanium on alumina (GOAL) substrates have also been produced.
Resumo:
Germanium NPN bipolar transistors have been manufactured using phosphorus and boron ion implantation processes. Implantation and subsequent activation processes have been investigated for both dopants. Full activation of phosphorus implants has been achieved with RTA schedules at 535?C without significant junction diffusion. However, boron implant activation was limited and diffusion from a polysilicon source was not practical for base contact formation. Transistors with good output characteristics were achieved with an Early voltage of 55V and common emitter current gain of 30. Both Silvaco process and device simulation tools have been successfully adapted to model the Ge BJT(bipolar junction transistor) performance.