265 resultados para Nichols, Harold
Resumo:
This paper describes a serpentine flexure spring design and fabrication process development for radio frequency microelectromechanical (RF MEMS) capacitive switches with coplanar waveguide (CPW) lines. Sputtered tungsten is employed as the CPW line conductor instead of Au, a non-Si compatible material. The bridge membrane is fabricated from Al. The materials and fabrication process can be integrated with CMOS and SOI technology to reduce cost. Results show the MEMS switch has excellent performance with insertion loss 0.3dB, return loss -27dB at 30GHz and high isolation -30dB at 40GHz. The process developed promises to simplify the design and fabrication of RF MEMS on silicon.
Resumo:
Our aim was to develop an age-appropriate measure of early manifestations of aggression. We constructed a questionnaire about normative developmental milestones into which a set of items measuring infants’ use of physical force against people and expressed anger were included. These items comprise the Cardiff Infant Contentiousness Scale (CICS). Evidence for the reliability and validity of the CICS is provided from analyses of a sample of N5310 British infants, assessed at a mean age of 6 months as part of a larger longitudinal study of the development of aggression. The informants’ CICS ratings demonstrated reasonable levels of internal consistency and interrater agreement. Informants’ ratings were validated by observations of infants’ distress in response to restraint in a car seat. Longitudinal analyses revealed that contentiousness was stable over time and that contentiousness at 6 months predicted infants’ later use of force with peers. When used in the company of other methods, the simple four-item CICS scale could serve as a useful screen for early manifestations of aggressiveness in human infants.
Resumo:
Raman and spreading resistance profiling have been used to analyze defects in germanium caused by hydrogen and helium implants, of typical fluences used in layer transfer applications. Beveling has been used to facilitate probing beyond the laser penetration depth. Results of Raman mapping along the projection area reveal that after post-implant annealing at 400°C, some crystal damage remains, while at 600°C, the crystal damage has been repaired. Helium implants create acceptor states beyond the projected range, and for both hydrogen and helium, 1×1016 acceptors/cm2 remain after 600°C. These are thought to be vacancy-related point defect clusters.
Resumo:
Background: Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology: We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset.
Resumo:
We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P = 1 × 10(-5). We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10(-17); including ADGC data, meta P = 5.0 × 10(-21)) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10(-14); including ADGC data, meta P = 1.2 × 10(-16)) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10(-4); including ADGC data, meta P = 8.6 × 10(-9)), CD33 (GERAD+, P = 2.2 × 10(-4); including ADGC data, meta P = 1.6 × 10(-9)) and EPHA1 (GERAD+, P = 3.4 × 10(-4); including ADGC data, meta P = 6.0 × 10(-10)).
Resumo:
The purpose of this paper is to review recent developments in the design and fabrication of Frequency Selective Surfaces (FSS) which operate above 300 GHz. These structures act as free space electromagnetic filters and as such provide passive remote sensing instruments with multispectral capability by separating the scene radiation into separate frequency channels. Significant advances in computational electromagnetics, precision micromachining technology and metrology have been employed to create state of the art FSS which enable high sensitivity receivers to detect weak molecular emissions at THz wavelengths. This new class of quasi-optical filter exhibits an insertion loss