367 resultados para 240304 Other Plasma Physics
Resumo:
In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas.
Resumo:
The first evidence of x-ray harmonic radiation extending to 3.3 A, 3.8 keV (order n > 3200) from petawatt class laser-solid interactions is presented, exhibiting relativistic limit efficiency scaling (eta similar to n(-2.5)-n(-3)) at multi-keV energies. This scaling holds up to a maximum order, n(RO)similar to 8(1/2)gamma(3), where gamma is the relativistic Lorentz factor, above which the first evidence of an intensity dependent efficiency rollover is observed. The coherent nature of the generated harmonics is demonstrated by the highly directional beamed emission, which for photon energy h nu > 1 keV is found to be into a cone angle similar to 4 degrees, significantly less than that of the incident laser cone (20 degrees).
Resumo:
An experimental investigation of the argon plasma behavior near the E-H transition in an inductively coupled Gaseous Electronics Conference reference cell is reported. Electron density and temperature, ion density, argon metastable density, and optical emission measurements have been made as function of input power and gas pressure. When plotted versus plasma power, applied power corrected for coil and hardware losses, no hysteresis is observed in the measured plasma parameter dependence at the E-H mode transition. This suggests that hysteresis in the E-H mode transition is due to ignoring inherent power loss, primarily in the matching system.
Resumo:
The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.
Resumo:
Magnetic neutral loop discharges (NLDs) can be operated at significantly lower pressures than conventional radio-frequency (rf) inductively coupled plasmas (ICPs). These low pressure conditions are favourable for technological applications, in particular anisotropic etching. An ICP–NLD has been designed providing excellent diagnostics access for detailed investigations of fundamental mechanisms. Spatially resolved Langmuir probe measurements have been performed in the plasma production region (NL region) as well as in the remote application region downstream from the NL region. Depending on the NL gradient two different operation modes have been observed exhibiting different opportunities for control of plasma uniformity. The efficient operation at comparatively low pressures results in ionization degrees exceeding 1%. In this regime neutral dynamics has to be considered and can influence neutral gas and process uniformity. Neutral gas depletion through elevated gas temperatures and high ionization rates have been quantified. At pressures above 0.1 Pa, gas heating is the dominant depletion mechanism. At lower pressures neutral gas is predominantly depleted through high ionization rates and rapid transport of ions by ambipolar diffusion along the magnetic field lines. Non-uniform profiles of the ionization rate can, therefore, result in localized neutral gas depletion and non-uniform processing. We have also investigated the electron dynamics within the radio-frequency cycle using phase resolved optical emission spectroscopy and Thomson scattering. In these measurements electron drift phenomena along the NL torus have been identified.
Resumo:
Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.
Resumo:
The dynamics of high energetic electrons (>= 11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He-O-2. plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited.