16 resultados para UTILIDAD OPERATIVA
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. No obstante, su elevada complejidad hace que los avances más recientes aún resulten insuficientes y reclama la necesidad de ir adoptando enfoques más operativos y menos preocupados por el estudio directo de sus aspectos internos. En tal sentido, se presentan aquí las bases de una aproximación centrada en los efectos observables de la comprensión, que utiliza el análisis de comportamientos y respuestas adaptadas a situaciones expresamente planificadas derivadas del análisis fenómeno-epistemológico del conocimiento matemático. La operatividad de la propuesta se ilustra con el estudio realizado sobre el algoritmo estándar escrito para la multiplicación de números naturales.
Resumo:
El objetivo de este artículo es concienciarnos de la importancia de aprovechar los conocimientos de geometría que poseen nuestros alumnos para explicar el concepto de probabilidad. Queremos demostrar lo beneficioso que, desde un punto de vista didáctico, puede ser la unión de la geometría y la probabilidad
Resumo:
¿Por qué las técnicas y los conocimientos de didáctica se difunden tan mal hacia el público y los profesores? La razón principal me parece que es la siguiente: la mayor parte de los difusores de los resultados de investigación en didáctica son conducidos a realizar un uso distorsionado e ilegítimo de ellos. No les acuso de hacerlo a propósito sino solamente de ceder a presiones múltiples y convergentes.
Resumo:
Cuando se me pidió un artículo sobre “lo que la didáctica de las matemáticas puede. aportar a un profesor de secundaria” estuve fuertemente tentado a eludir el compromiso ya que la apuesta me parecía bastante difícil. Esta reticencía proviene de un conjunto de circunstancias desfavorables y escandalosas: —!la didáctica es difícil de explicar, sobre todo a los profesores¡ —frecuentemente es más difícil de explicarsela a medida que esperan más efectos de ella; desde este punto de vista, las condiciones de la enseñanza en el primer ciclo de secundaria son vividas como tan malas que justifican las expectativas más imperiosas; —todavía es más dificil de justificar a sus ojos cuando piensan que la didáctica debe aportarles una ayuda para lo esencial, bajo forma de innovaciones.
Resumo:
En esta comunicación ponemos de manifiesto la importancia del estudio de los poliedros en la Enseñanza Secundaria y su utilidad para el desarrollo y la comunicación de ideas matemáticas. Con esta intención planteamos una serie de tareas que permiten al profesor y al alumno trabajar los poliedros potenciando el lenguaje en el aula de matemáticas y las capacidades espaciales del alumno. Las tareas aquí presentadas fueron realizadas en unas Jornadas de Investigación en el aula de matemáticas organizadas por la Sociedad de Profesores de Matemáticas THALES en Granada con la participación de profesores de distintos niveles educativos.
Resumo:
En este trabajo se parte de la perspectiva constructivista de la enseñanza y aprendizaje de las matemáticas y se considera la resolución de problemas como una actividad interesante y formativa. Se presenta el problema del tablero de ajedrez y distintos itinerarios para su trabajo, siguiendo las fases de Polya (1982) para la resolución de problemas. Finalmente se presentan algunas reflexiones sobre la resolución del problema, sobre el análisis de esta resolución y sobre la utilidad y conveniencia de este tipo de análisis para el proceso de enseñanza y aprendizaje de las matemáticas.
Resumo:
La geometría en el currículo de secundaria se introduce con la intención de proporcionar al alumno una mayor capacidad de comprensión de la organización espacial del mundo que nos rodea, exigiendo para ello un aprendizaje sistematizado. Con este propósito, el ``Grupo PI' trabaja en el desarrollo de actividades para el aula utilizando un material económico y de fácil adquisición como es el papel. El objetivo es proporcionar al profesor un material eficaz para el trabajo en el aula y aproximar a los alumnos a la Geometría Plana a través de una serie de tareas estructuradas que logran una mayor significatividad del proceso de aprendizaje. Se emplearán axiomas del origami para crear secuencias que permitan la construcción de representaciones significativas en los procesos de aprendizaje. Por último, intentaremos mostrar a los profesores la utilidad del papel como material didáctico en la construcción de conocimiento geométrico.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
En la Educación Matemática es ampliamente reconocida la importancia de la investigación de los factores que influyen o generan procesos de aprendizaje, que ayuden a los estudiantes a construir de manera significativa los objetos matemáticos. En el marco de esta propuesta, se reconoce que la investigación actual de carácter cognitivo en educación matemática, evidencia que los problemas de comprensión que presentan los estudiantes tienen que ver tanto con el contenido enseñado, como con la complejidad de la construcción de los saberes, es decir, con los funcionamientos propios que constituyen la parte operativa del pensamiento.
Resumo:
La experiencia que se presenta pretende valorar la intuición optimizadora en estudiantes de secundaria obligatoria. El problema que se aborda es, dado un conjunto de cantidades, elegir entre ellas las que sumen una cantidad exacta o lo más cercana a ella. El resultado de la experiencia de aula en un contexto específico ha permitido identificar la poca preparación de los estudiantes para este tipo de tarea. La principal conclusión es que los estudiantes están preparados para sumar cantidades, pero les resulta muy difícil elegir los sumandos que sumen una determinada cantidad, desconocen estrategias y son incapaces de inventar heurísticos que les lleve a conseguir el objetivo. La reflexión, consecuencia de la experiencia realizada, es que a los problemas de optimización se les dedica poca atención en la enseñanza obligatoria a pesar de ser de gran utilidad en la vida cotidiana.
Resumo:
Esta es una experiencia de aula llevada a cabo en el ciclo 2, la cual estuvo a cargo de dos profesoras practicantes quienes promovieron la estructura multiplicativa hasta identificar los múltiplos y divisores de un número, dicha experiencia se rigió desde lo metodológico por la estructura propuesta por el grupo DECA (); a nivel conceptual por varios autores como Verganud, Maza (1991),y otros; y finalmente el marco legal por los Estándares Básicos (2007) y los Lineamientos (1998. Se realizaron una serie de actividades que promovieron el reconocimiento y conceptualización de la división como reparticiones equitativas, y promovieron la reflexión tanto de los estudiantes como de las profesoras, en torno a la utilidad, facilidad y aceptación de las actividades para la comprensión de los estudiantes.
Resumo:
En estos momentos hay una gran actividad en las escuelas canarias alrededor de la resolución de problemas. Un objetivo importante en el aprendizaje de las matemáticas es el de "elaborar estrategias de identificación y resolución de problemas en los diversos campos del conocimiento y la experiencia, mediante procedimientos intuitivos y de razonamiento lógico, contrastándolas y reflexionando sobre el proceso seguido." La resolución de ejercicios y problemas es un proceso clave en la enseñanza de las matemáticas, mediante el cual los alumnos experimentan la potencia y la utilidad de las matemáticas en el mundo que los rodea.
Resumo:
El inicio del estudio de la proporción de nacimientos de niños y niñas (sex ratio) comienza en el siglo XVIII y ha ocupado a grandes matemáticos. En 1712 John Arbuthnott ya trató de explicar el hecho comprobado de que el número anual de nacimientos de niños superaba al de niñas. Esto supone el primer ejemplo de un contraste de significación y el germen de la técnica de los contrastes de hipótesis estadísticas. El objetivo de este artículo es mostrar estos inicios y reflexionar sobre su utilidad didáctica hoy.
Resumo:
En este trabajo se plantea la necesidad de motivar el estudio de modelos matemáticos considerando algunos casos básicos de naturaleza combinatoria de importancia en el mundo real. El estudio de los correspondientes problemas de optimización y la introducción y aplicación de métodos de resolución sencillos se toma como base para argumentar a favor de su inclusión, como alternativa válida para motivar la utilidad de las Matemáticas, en los últimos cursos de la enseñanza secundaria.
Resumo:
Existen en el mercado herramientas que permiten cortar, limpiamente, el llamado corcho blanco o styropor. Las piro-sierras son las más elementales y pueden conectarse tanto a la red eléctrica como a una pila. La casa Ayllón tiene comercializada una piro-sierra bastante elaborada. Pero, si lo que deseas es cortar styropor en grandes cantidades y dimensiones, la mesa que se describe a continuación puede serte de utilidad.