19 resultados para Sistemas abertos (Física)
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Presentamos los primeros resultados de un estudio exploratorio sobre el desarrollo del conocimiento didáctico de futuros profesores de matemáticas con respecto a las nociones de estructura conceptual y sistemas de representación. Estos resultados se obtuvieron al codificar y analizar las grabaciones de clase y las producciones de estudiantes del último curso de Matemáticas en una asignatura de didáctica de las matemáticas. Se encontró que las producciones y las actuaciones de los alumnos pasan por diferentes estados que permiten identificar tanto algunas dificultades, como momentos en los que surgen reorganizaciones conceptuales.
Resumo:
Se presenta un ejemplo de análisis didáctico del tópico "Ecuaciones de primer grado y sistemas de ecuaciones"
Resumo:
El presente documento corresponde al trabajo final de la concentración en Educación Matemática de la Maestría en Educación de la Universidad de los Andes. El trabajo fue elaborado por cuatro profesores licenciados en matemáticas que ejercen en instituciones educativas públicas y privadas en la ciudad de Bogotá y en el departamento de Cundinamarca. Este informe describe el diseño fundamentado y justificado, la implementación y el balance estratégico de la unidad didáctica titulada “Método gráfico para resolver sistemas de ecuaciones lineales 2x2”. El diseño de la unidad didáctica surgió de la selección de un tema matemático que a su vez hace parte de los contenidos incluidos en el currículo oficial para los grados octavo y noveno de educación básica como lo establece el documento de Estándares Básicos de Competencias (Ministerio de Educación Nacional [MEN], 2006a). El diseño se fundamenta a partir del procedimiento de análisis didáctico que constituyó el contenido central de la maestría. Dicho procedimiento permitió concretar elementos previos a la aplicación y la descripción junto con el balance estratégico de la implementación de la unidad didáctica.
Resumo:
La presente ponencia resume el inicio de la construcción de un laboratorio de física y matemáticas en el programa de la Licenciatura en Matemáticas y Tecnologías de la Información, de la Universidad La Gran Colombia. Se presenta la experiencia en el diseño de la primera actividad y de los constructos teóricos y prácticos que se tuvieron en cuenta. Esta experiencia de aula está avalada dentro de la conformación de un semillero de investigación de la facultad, y muestra cómo a partir de un sistema masaresorte se pueden construir algunos conceptos fundamentales como el período de funciones, el comportamiento de las mismas y destacar la importancia del modelado de datos para su respectivo análisis y obtener así una aproximación por medio de la matemática.
Resumo:
Este estándar recomienda que los estudiantes formulen preguntas que puedan ser resueltas usando la recolección de datos y su interpretación. Los estudiantes podrán aprender a coleccionar datos, organizar sus propios datos o los de los demás, y disponerlos en gráficas y diagramas que sean útiles para responder preguntas. Los conceptos básicos de probabilidad se pueden manejar de mano de los conceptos estadísticos.
Resumo:
Se analizan resultados de un estudio con alumnos de secundaria, en el que se utiliza un modelo virtual de la balanza para la enseñanza de la resolución de ecuaciones de primer grado. A diferencia del modelo concreto o diagramático, el modelo virtual es dinámico e interactivo y en su versión ampliada (balanza con poleas) incluye la representación y resolución de ecuaciones con sustracción de términos. Los resultados indican que al final del estudio, los alumnos logran extender el método algebraico de resolución a una variedad amplia de modalidades de ecuaciones y que de manera espontánea infieren el método de transposición de términos. Con el fin de investigar los procesos de producción de sentido y de construcción de significado, se adopta una perspectiva semiótica que incorpora al análisis las producciones sígnicas de los estudiantes, como parte de la interacción entre los sistemas de signos algebraico, aritmético y el sistema de signos del modelo.
Resumo:
Este trabajo tiene como objetivo dar argumentos en favor de la inclusión de los sistemas de álgebra computacional en el currículo de matemáticas desde el nivel medio de enseñanza hasta el nivel superior. Primero, se presentan algunos conceptos relativos al uso de estos sistemas en la educación. Después, se presentan varios ejemplos con el propósito de mostrar el poder de estos sistemas como auxiliares en la solución de problemas. Finalmente se hace una propuesta acerca de su uso en educación.
Resumo:
Presentamos una reflexión basada en la diversidad escolar como una problemática de los sistemas educativos actuales. A modo de particularizar y evidenciar nuestra postura, elaboramos una discusión alrededor de tres perspectivas del problema. Resaltamos el rol de la matemática en cada una de ellas y la necesidad de realizar investigaciones al interior de cada una de las poblaciones descritas. Nos interesa reflexionar sobre el rol del discurso matemático escolar en contraste con la diversidad escolar, bajo la hipótesis de que el primero no considera las características de los estudiantes, contexto, cultura, factores que la propician. Referiremos a dicha diversidad escolar, tras el análisis de tres comunidades desatendidas por el sistema educativo: los(as) niños(as) con talento cuyas mismas capacidades superiores los aíslan de una educación diferenciada y por el otro, los(as) niños(as) Sordos(as) y niños(as) indígenas, cuya condición física o socioeconómica los determina con rezago educativo.
Resumo:
En el presente artículo se reportan los resultados de una investigación que clasifica las conceptualizaciones que tienen estudiantes de primer ingreso universitarios de Costa Rica en temas de geometría y sistemas de ecuaciones mediante el modelo SOLO Taxonómico. Este modelo categoriza la actividad mental que realizan los sujetos cuando se enfrentan a una tarea escolar, considerando aspectos cuantitativos y cualitativos. Inicialmente los estudiantes se ubican en los primeros niveles de razonamiento en los temas de geometría y en niveles intermedios en sistemas de ecuaciones, al final los estudiantes mostraron mejoría después de un curso introductorio de matemáticas.
Resumo:
Nossa pesquisa sobre as diferentes possibilidades de tratamento da noção de sistemas de equações lineares na transição entre o Ensino Médio e Superior. O referencial teórico escolhido é a noção de níveis de conhecimento esperados dos estudantes conforme definição de Robert (1997) apoiado das abordagens teóricas em termos de quadro de Douady (1984), de pontos de vista de Rogalski (1995) e complementado pela teoria antropológica do didático de Bosch e Chevallard (1999), que permite analisar as diferentes relações institucionais esperadas existentes assim como as relações pessoais desenvolvidas pelos estudantes em função das anteriores. Observamos que apesar da coerência entre as relações institucionais esperadas e existentes, os resultados obtidos pelos estudantes nas macroavaliações, tanto no Ensino Médio como no Ensino Superior, não correspondem às expectativas.
Resumo:
Durante muchos años en el sistema educativo se consideró el proceso de enseñanza aprendizaje de las matemáticas como una actividad ubicada en el aula, siendo el único espacio donde el que sabe, el profesor, dota de conocimientos al que aprende, el alumno. Este tipo de enseñanza, sin considerarla mala, trae como consecuencia que al enfrentar al estudiante a un problema real tenga dificultades para su solución. En este artículo se reporta parte de una investigación cuyo objetivo fue a entender el conocimiento que surge en la interacción entre dos contextos diferentes: uno el matemático y el otro el derivado de un área técnica en particular. Se describe el conocimiento de un grupo de enfoque relativo al campo conceptual de un sistema de ecuaciones lineales con dos incógnitas en el contexto del balance de materia. La aproximación cognitiva del campo conceptual de interés, se ha realizado sustentado en la Teoría de Campos Conceptuales de Vergnaud y se trabaja con la Matemática en el Contexto de las Ciencias como marco de referencia.
Resumo:
Este artículo trata de la enseñanza y el aprendizaje de la modelación matemática en los cursos de física y de matemáticas. En el 2002, un nuevo currículo para el bachillerato en Francia acentuó el papel de las matemáticas como una herramienta para modelar en otras ciencias. Una descripción del proceso de modelación es presentada, así como el análisis de los manuales comúnmente usados en estos cursos. Este análisis revela el proceso de transposición del "proceso de modelación" practicado por los expertos y el proceso que es adaptado finalmente a la escuela. La implementación de una situación experimental con tareas no habituales permite la identificación de la influencia de las praxeologías en los procesos de los estudiantes. La vinculación de algunas dificultades presentes al abordar la situación con la transposición del proceso de modelación también es discutida en este artículo.
Resumo:
En este trabajo presentamos una caracterización del currículo matemático de nivel medio en el Estado de Yucatán, en tanto su estructura y la orientación de sus componentes con el fin de dar indicios sobre la planificación, qué matemáticas estudiar y cómo hacerlo. Este estudio se basó, entonces, en un análisis de su evolución y de la identificación de las incongruencias e inconsistencias, en cuanto a aspectos como organización y estructura que se plantean en los planes y programas de matemáticas de bachillerato.
Resumo:
La introducción de nuevos planes de estudio en Francia (2002), muestra la importancia que tiene actualmente la enseñanza y aprendizaje de la modelación, principalmente en disciplinas científicas como Matemáticas y Física. En los programas oficiales y libros del último año de preparatoria se observa la introducción de la noción de ecuación diferencial como objeto de estudio pero también como herramienta para modelar diversas situaciones físicas. En esta investigación, estableceremos un modelo del proceso de modelación que constituya una referencia para posteriormente caracterizarlo, desde un punto de vista antropológico, en dos instituciones diferentes: la clase de matemáticas y la clase de física.
Resumo:
Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.