12 resultados para SECUENCIAS
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se presentan los resultados obtenidos de un curso, “Taller de elaboración de secuencias didácticas”, diseñado con el objetivo de contribuir a la formación y actualización de los profesores de matemáticas del Colegio de Estudios Científicos y Tecnológicos del Estado de Yucatán (CEC y TEY), en el conocimiento y aplicación de las técnicas y procedimientos que configuran un modelo didáctico para la producción de secuencias didácticas para cursos de Matemáticas; de tal manera, que los profesores pudieran aplicarlas en el salón de clases con diferentes grupos de estudiantes, de acuerdo a las características propias de los mismos. Tomando como referencia, documentos y libros de texto acordes a las bases teóricas que se consideran en la Reforma Curricular de la Educación Media Superior Tecnológica, el Modelo de la Educación Media Superior Tecnológica; así como los programas de Matemáticas que se llevan en los diferentes planteles del CEC y TEY.
Resumo:
En esta comunicación presentamos la forma como resumimos todos los posibles caminos de aprendizaje considerados para el desarrollo de dos tareas. Las dos tareas pretenden contribuir al logro de un objetivo de aprendizaje: resolver problemas que implican permutaciones sin repetición. Exponemos algunas expectativas de aprendizaje planteadas en términos de capacidades y errores y organizamos esas expectativas por medio de caminos de aprendizaje. Analizamos los caminos de aprendizaje resumiendo las estrategias de solución mediante secuencias de capacidades. Finalmente, analizamos la contribución de las tareas al logro del objetivo.
Resumo:
Presentamos aquí una investigación sobre concepciones aleatorias en estudiantes de secundaria. Las respuestas de 277 estudiantes de dos grupos, con edades de 14 y 17 años, sirven para identificar las propiedades asociadas a secuencias aleatorias y deterministas. En ellas encontramos la capacidad de los alumnos para reconocer modelos matemáticos subyacentes en las secuencias de los resultados aleatorios y su utilización en los juicios sobre aleatoriedad. Por ellos sugerimos al final algunas implicaciones para la enseñanza de la probabilidad en estos niveles iniciales.
Resumo:
La geometría en el currículo de secundaria se introduce con la intención de proporcionar al alumno una mayor capacidad de comprensión de la organización espacial del mundo que nos rodea, exigiendo para ello un aprendizaje sistematizado. Con este propósito, el ``Grupo PI' trabaja en el desarrollo de actividades para el aula utilizando un material económico y de fácil adquisición como es el papel. El objetivo es proporcionar al profesor un material eficaz para el trabajo en el aula y aproximar a los alumnos a la Geometría Plana a través de una serie de tareas estructuradas que logran una mayor significatividad del proceso de aprendizaje. Se emplearán axiomas del origami para crear secuencias que permitan la construcción de representaciones significativas en los procesos de aprendizaje. Por último, intentaremos mostrar a los profesores la utilidad del papel como material didáctico en la construcción de conocimiento geométrico.
Resumo:
En este trabajo, presentamos los resultados de investigación de una tesis de maestría realizada en México. Nuestro objetivo fue indagar cómo los estudiantes del Nivel Medio Superior, analizan secuencias de crecimiento visual, con base en representaciones gráficas, así como la forma en que expresan algebraicamente el patrón que subyace a una secuencia; teniendo como supuesto que el análisis visual organizado de las secuencias puede contribuir a la detección, formulación y generalización de patrones. Con base en nuestros resultados, afirmamos que la visualización juega diferentes papeles dentro del proceso de generalización, los cuales identificamos y clasificamos a la luz de la Teoría de la Objetivación y la Teoría de la Representaciones Semióticas. Proponemos una herramienta para discutir el papel y funcionamiento de la visualización en la generalización de patrones.
Resumo:
Se aborda, desde una perspectiva socioepistemológica, la construcción del conocimiento y el desarrollo del pensamiento proporcional buscando generar espacios de reflexión y de interacción con el profesorado y el estudiantado que posibiliten la resignificación del conocimiento institucionalizado. Recurre entre otras fuentes y técnicas, al análisis de textos didácticos clásicos y contemporáneos, con el objeto de visualizar la naturaleza y evolución de los saberes matemáticos y escolares en juego, y, decidir aspectos necesarios a los diseños de secuencias didácticas en orden a favorecer la significación de fracciones, razones y proporciones como conceptos-herramientas en el estudiantado en el ámbito de la proporcionalidad. Tiene el objetivo de comprender de qué manera las prácticas que toman lugar en el aula, contribuyen al desarrollo del pensamiento proporcional de los estudiantes, en los niveles 5º al 10º de la escolaridad obligatoria.
Resumo:
Este trabajo presenta el diseño de dos secuencias didácticas en forma de prácticas de laboratorio fundamentadas en resultados de investigaciones en matemática educativa de corte socioepistemológico. Se busca favorecer el uso inteligente de la tecnología (calculadoras graficadoras) en el aula de matemáticas así como un acercamiento entre el profesor y alumno de matemáticas para con la investigación en matemática educativa.
Resumo:
Este artículo tiene como objeto de investigación el aprendizaje y como objeto matemático el concepto de función con estudiantes sordos de educación básica y media, con el propósito de mostrar cómo el problema social y cultural que tiene esta población para el aprendizaje de las matemáticas puede ser minimizado mediante la intervención del profesor, a partir de secuencias didácticas de enseñanza y la asistencia de un entorno informático. Para ello, se ha utilizado como marco teórico las situaciones didácticas de Brousseau y los registros de representación semiótica de Duval, y como metodología la Ingeniería didáctica.
Resumo:
El propósito de este artículo es presentar una propuesta didáctica de la integral definida para la educación secundaria obligatoria y bachillerato a través de unas secuencias de aprendizaje que ayuden al estudiante a captar las ideas fundamentales del cálculo integral, del concepto de integral y del proceso de integración.
Resumo:
El estudio tiene como principal propósito analizar la incidencia del desarrollo de un curso de geometría que utiliza como herramienta instruccional el software educativo CABRI GEOMETRE II, en la evolución del razonamiento geométrico de alumnos de educación superior. Tomando como base los niveles y fases del modelo de razonamiento geométrico de Van Hiele, se realizó una categorización referente al grado de adquisición de un determinado nivel, en relación a la naturaleza de la tarea. Los resultados obtenidos en el análisis corroboraron las hipótesis de que el factor instruccional es necesario para el progreso entre etapas de aprendizaje y que existe lentitud en la maduración del razonamiento geométrico de los alumnos, a pesar de vivir experiencias de enseñanza estructuradas e intencionales. Además, el avance promedio es de una etapa y no se detectaron diferencias significativas entre los niveles en cuanto a los avances promedio en las etapas de aprendizaje. Se concluye que el modelo de análisis diseñado en el estudio parece pertinente, porque establece secuencias, de etapas de aprendizaje adaptadas a la naturaleza de los ítems.
Resumo:
El analizar las relaciones epistemológicas entre prácticas sociales y el conocimiento matemático es uno de los objetivos de una aproximación teórica denominada socioepistemología. Esto permite informar acerca de cómo se construye dicho conocimiento desde una perspectiva de la actividad que desarrollan los humanos interactivamente y tomar en cuenta no sólo la producción matemática final, sino las herramientas y los argumentos que entran en juego. Una vez que se reconoce este origen social, podemos ver qué ocurre en sistemas didácticos por medio del diseño de secuencias cuyo origen es precisamente una socioepistemología del saber. La situación que se genera tiene pues la intención, de hacer patente la relación entre práctica y saber, en particular, entre la predicción y la periodicidad.
Resumo:
Ante el interés creciente por álgebra lineal y las dificultades que aún continúan presentando los estudiantes en el aprendizaje de los objetos abstractos de esta disciplina, el presente trabajo pretende apoyarse en el marco de la geometría sintética para introducir los espacios analíticos R1, R2 y R3 y poder sólo después realizar las generalizaciones pertinentes a Rn. Un análisis histórico permite comprender ciertas dificultades de los estudiantes y a la vez proporciona elementos para construir secuencias de actividades con miras a introducir los conceptos de álgebra lineal de tal manera que los estudiantes perciban la necesidad del formalismo, presentando todos los sentidos posibles de los conceptos en sus diferentes modos de representación, en particular conectarlo con sus conocimientos anteriores sobre los sistemas de ecuaciones lineales y la geometría. Esta investigación se desarrollará con estudiantes de primer año universitario, cuando llevan por primera vez álgebra lineal y el concepto de espacio vectorial es enseñado formalmente como una definición muy amplia que involucra varios conceptos previos.