18 resultados para Registros de representación
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En la Educación Matemática es ampliamente reconocida la importancia de la investigación de los factores que influyen o generan procesos de aprendizaje, que ayuden a los estudiantes a construir de manera significativa los objetos matemáticos. En el marco de esta propuesta, se reconoce que la investigación actual de carácter cognitivo en educación matemática, evidencia que los problemas de comprensión que presentan los estudiantes tienen que ver tanto con el contenido enseñado, como con la complejidad de la construcción de los saberes, es decir, con los funcionamientos propios que constituyen la parte operativa del pensamiento.
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.
Resumo:
Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.
Resumo:
Frecuentemente, se hace énfasis en la enseñanza y aprendizaje de las matemáticas movilizar diversos registros de representación de una misma gestión. Sin embargo, el tratamiento de conversión de una representación en una representación de otro registro no es fácil y en ocasiones hasta imposible. Al respecto, Duval (1988) señala: “cuando se efectúa la conversión ecuación → gráfico no surge ninguna dificultad, pero todo cambia cuando se hace la conversión inversa”. Este aporte es muy sobresaliente e induce a investigar la naturaleza de esta problemática. En este sentido, nuestro trabajo de investigación está enfocado en identificar algunas dificultades que puedan presentar los estudiantes al tratar de poner en correspondencia el registro gráfico con el algebraico. Para ello, se aplicaron actividades donde se exponen algunos valores visuales de la gráfica, con el fin de establecer una correspondencia entre esos valores visuales de la recta y su respectiva escritura algebraica, así como, establecer un sistema para las diferentes categorías de tres rectas en el plano.
Resumo:
Se reportan en este artículo los primeros resultados de una investigación en curso sobre algunas dificultades de aprendizaje relacionadas con el concepto de función lineal. La investigación está basada en los aportes teóricos de R. Duval sobre registros de representación semiótica y tiene dos propósitos: se trata de detectar las dificultades enfrentadas por los estudiantes para transformar una representación en otra (de una función lineal) y además diseñar una serie actividades didácticas que les ayuden a superar las dificultades detectadas. Los resultados reportados aquí provienen de la aplicación de un cuestionario a nueve estudiantes de segundo semestre de licenciatura del área económico administrativa. Se expone el cuestionario aplicado, las respuestas de los estudiantes y se analizan estas respuestas a la luz de la teoría de Duval.
Resumo:
En el presente escrito, se reportan los resultados de un trabajo de investigación a nivel licenciatura, el cual se centró en el estudio de comportamientos gráficos en funciones algebraicas y trigonométricas, específicamente en f(x)=x , f(x)=x^2 ,f(x)=x^3 , f(x)=sen(x) y f(x)=cos(x), así como las transformaciones de cada una, considerando la expresión Y=Cf(ax+c)+D, con la intención de realizar comparaciones gráficas entre las funciones originales y las transformadas, el propósito general fue analizar si la presentación de funciones algebraicas y trigonométricas en diversos contextos (algebraico, visual, numérico y gráfico), permite al estudiante identificar comportamientos análogos y relacionar éstos con transformaciones gráficas. De acuerdo a los resultados obtenidos, concluimos que el estudiante al producir sus propias gráficas, éste logra identificar por si mismo comportamientos análogos entre las gráficas algebraicas y trigonométricas, además, el uso de diferentes registros de representación coadyuva al desarrollo de dichos resultados.
Resumo:
Este estudio de caso hace parte de una investigación que se está realizando con estudiantes sordos de grados octavo y décimo, con el propósito de lograr la comprensión/construcción del concepto de función, desde las dimensiones epistemológicas, didáctica y cognitiva. El estudio se fundamenta en el marco teórico de los registros de representación semiótica y la metodología de la Ingeniería didáctica, apoyado en el diseño, desarrollo e implementación de un software.
Resumo:
Este artículo tiene como objeto de investigación el aprendizaje y como objeto matemático el concepto de función con estudiantes sordos de educación básica y media, con el propósito de mostrar cómo el problema social y cultural que tiene esta población para el aprendizaje de las matemáticas puede ser minimizado mediante la intervención del profesor, a partir de secuencias didácticas de enseñanza y la asistencia de un entorno informático. Para ello, se ha utilizado como marco teórico las situaciones didácticas de Brousseau y los registros de representación semiótica de Duval, y como metodología la Ingeniería didáctica.
Resumo:
En esta comunicación ponemos de manifiesto la importancia del estudio de los poliedros en la Enseñanza Secundaria y su utilidad para el desarrollo y la comunicación de ideas matemáticas. Con esta intención planteamos una serie de tareas que permiten al profesor y al alumno trabajar los poliedros potenciando el lenguaje en el aula de matemáticas y las capacidades espaciales del alumno. Las tareas aquí presentadas fueron realizadas en unas Jornadas de Investigación en el aula de matemáticas organizadas por la Sociedad de Profesores de Matemáticas THALES en Granada con la participación de profesores de distintos niveles educativos.
Resumo:
Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.
Resumo:
Presentamos los primeros resultados de un estudio exploratorio sobre el desarrollo del conocimiento didáctico de futuros profesores de matemáticas con respecto a las nociones de estructura conceptual y sistemas de representación. Estos resultados se obtuvieron al codificar y analizar las grabaciones de clase y las producciones de estudiantes del último curso de Matemáticas en una asignatura de didáctica de las matemáticas. Se encontró que las producciones y las actuaciones de los alumnos pasan por diferentes estados que permiten identificar tanto algunas dificultades, como momentos en los que surgen reorganizaciones conceptuales.
Resumo:
Para la Educación Matemática, el uso de la tecnología computacional hoy, reviste particular interés investigativo en lo que respecta al aprendizaje de las matemáticas de nuestros niños y niñas en las instituciones escolares; dado que, la tecnología computacional posibilita el estudio (tratamiento) de los objetos matemáticos y sistemas de representación y las representaciones semióticas que constituyen un elemento básico para entender la construcción del conocimiento de los estudiantes (Lupiañez, Moreno,1999) y desde las actividades cognitivas de representación inherentes a la semiosis: formación, tratamiento y conversión, de registros semióticos (Duval,1999).
Resumo:
En el presente trabajo se aborda el estudio de la variación de una función cualquiera cuando se tiene sólo su representación gráfica y no se conoce su representación algebraica, así como la relación de la función con su primera y su segunda derivada y la relación entre tales derivadas, esto es, la información que puede proporcionar cada derivada acerca de la función y la información que aporta cada derivada con respecto a la otra.
Resumo:
El presente trabajo forma parte de la primera etapa del Proyecto de Investigación “Análisis del Lenguaje Matemático y su influencia en los procesos de Validación en estudiantes universitarios de Ingeniería” realizado en forma conjunta por la Facultad de Agronomía UNCPBA (Azul-Argentina), y la Facultad de Química e Ingeniería UCA (Rosario-Argentina). Aquí se presentan y analizan los resultados de una encuesta piloto en pos de caracterizar las dificultades y obstáculos para la comprensión y traducción entre los registros de expresiones verbales o escritas (lenguaje proposicional) y su representación en lenguaje algebraico (uso de símbolos matemáticos) en los estudiantes que ingresan a la Universidad.
Resumo:
El estudio de la primera representación adquiere un papel determinante en la actividad de la resolución de problemas, ya que se presenta entre la percepción del problema y el proceso de resolución. El presente trabajo, plantea la posibilidad de desarrollar la formulación de problemas para enriquecer el contenido de la primera representación, permitiendo explorar nuevas representaciones para identificar la organización de sus relaciones y establecer su articulación en problemas contextualizados.