63 resultados para Flores femininas

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casi todo el mundo ha oído hablar de Leonardo de Pisa, más conocido como Fibonacci. Sí, claro, el de la famosa sucesión 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,...; la de los girasoles, las piñas, las espirales, la del número de oro. Incluso hay un vídeo dedicado a él.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de tercero y cuarto de Secundaria en la resolución del "problema de las baldosas". Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde distintos planteamientos las investigaciones han proporcionado información sobre las características de la comprensión del concepto de derivada en los estudiantes. Sin embargo, falta más información sistemática sobre indicadores que ayuden a describir el desarrollo de la comprensión de dicho concepto. En este trabajo, desde la teoría piagetiana del desarrollo de un esquema a través de los niveles intra, inter, trans, caracterizamos una evidencia empírica de cómo el uso que se hace de las “relaciones lógicas” entre diferentes elementos matemáticos del concepto derivada por parte de los estudiantes cuando resuelven un problema, aporta información para explicar el fenómeno de paso de un nivel de desarrollo del esquema derivada al siguiente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoje encontramos estatística nos currículos de matemática da maioria dos países. Em Portugal, a estatística é ensinada nas aulas de matemática por um professor de matemática até ao ensino universitário. As orientações curriculares para o ensino da Estatística referem a necessidade de os alunos colocarem questões, recolherem, organizarem e representarem dados através de uma investigação. Uma forma de o fazer é implementando estratégias de trabalho colaborativo na sala de aula. Esta forma de trabalho cria oportunidades de enriquecer o poder estatístico dos alunos pois discutem e explicam ideias, expõem, avaliam e refutam argumentos e resoluções. Nesta comunicação procura-se reflectir sobre as vantagens do trabalho colaborativo nas aulas de estatística, incluindo a nossa própria investigação sobre o tema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3o y 4o de la ESO en la resolución del “problema de las baldosas”. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este documento presentamos algunos resultados de un estudio sobre el desarrollo del conocimiento didáctico de futuros profesores que participaron en una asignatura de didáctica de la matemática. Con base en la idea de factores de desarrollo del conocimiento didáctico y de un esquema metodológico que desarrollamos para identificar y describir estados de desarrollo, codificamos y analizamos algunas de las producciones que los futuros profesores elaboraron en grupos en la asignatura. La caracterización de estos estados permite establecer cómo evoluciona el conocimiento didáctico de los futuros profesores a lo largo del tiempo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este capítulo presenta el diseño, implementación y evaluación de una unidad didáctica sobre ecuaciones lineales con una incógnita. Diseñamos e implementamos la unidad didáctica objeto de este trabajo teniendo en cuenta las dificultades que presentan los estudiantes en la traducción al lenguaje algebraico, el planteamiento y solución de ecuaciones lineales de primer grado y la solución de problemas con ecuaciones lineales de primer grado. La interpretación de frases de la cotidianidad que deben ser traducidas a un lenguaje formal para construir expresiones algebraicas y con ellas generar ecuaciones crean una barrera para la utilización real del álgebra. Para alcanzar un aprendizaje significativo de los procesos algebraicos es necesario dotar las actividades de significado dentro del contexto del joven y así tener un aprendizaje concreto que posteriormente sirva de plataforma para el uso de la ecuación como herramienta fundamental en la aplicación del algebra en contextos reales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, y examinado el aprendizaje del estudiante en el análisis cognitivo, en el aná-lisis de instrucción vamos a estudiar qué medios dispone el profesor para lograr sus fines. El foco de atención será la enseñanza. Se trata de hacer una descripción de los medios que va a poner en práctica el profesor para lograr sus expectativas de aprendizaje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se analiza la importancia de la inclusión del tema de sucesiones desde preescolar hasta el nivel medio superior en México. El marco teórico que da soporte a esta investigación es la Teoría de Representaciones Semióticas de Duval (1998), en combinación con el uso de tecnología TI-Nspire. Centramos la atención en el nivel medio superior, con la finalidad de que los alumnos a través del manejo de las representaciones semióticas: verbal, gráfica, tabular y analítica, adquieran el concepto de sucesión aún sin definirlo formalmente. A través del uso de representaciones semióticas instrumentadas en la calculadora TINSpire con ejemplos acordes al entorno del alumno (deportes, medio ambiente) se forma el concepto de sucesión. Paralelamente se insiste en la detección tanto del dominio, imagen y grafo; lo anterior con la finalidad de que el alumno visualice y detecte que el dominio de las funciones en juego siempre es el conjunto de los números naturales y la imagen un subconjunto de los números reales, así como de la relación funcional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este artigo apresenta resultados parciais de uma investigação de doutorado referente à busca de temas adequados aos interesses dos alunos, que estejam em sintonia com a vida moderna e que possibilitem desenvolver conteúdos matemáticos para o Currículo de Matemática, no Ensino Médio. Apresenta-se a história desta etapa da Educação Básica, no Brasil, visando uma compreensão do todo que possibilite identificar temas já trabalhados ou desenvolvidos no Currículo de Matemática. O objetivo desta pesquisa é investigar quais seriam os possíveis temas a serem trabalhados, no Ensino Médio, que alie conteúdos matemáticos e temas de interesse. A metodologia de pesquisa apresenta uma abordagem qualitativa, pois permite que o pesquisador valide a pesquisa através da análise e descrição dos dados coletados pelo pesquisador. Um exemplo de tema a ser explorado, é a Criptografia, pois permite desenvolver conceitos matemáticos em atividades de codificação e decodificação, proporcionando o trabalho em grupo, a criação de estratégias de resolução de situações problemas e a recontextualização dos conteúdos envolvidos no tema abordado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem como objetivo apresentar uma reflexão sobre o processo de aprendizagem do conceito de Função Exponencial no Ensino Médio, a partir da utilização do jogo Torre de Hanói virtual, através do uso de laptops educacionais. Os dados foram coletados por meio de um questionário inicial, para identificação das ideias prévias dos estudantes e por meio de registros em um diário de campo. Em seguida, os dados foram analisados conforme a metodologia Análise Textual Discursiva. A partir da análise, emergiram duas categorias: a primeira indica que a ideia inicial apresentada pelos alunos em relação à Função Exponencial está associada a uma caracterização da linguagem ligada à Função Quadrática. Já, a segunda categoria aponta uma transformação da linguagem natural do entendimento da função exponencial para a linguagem formal, isto é, a formalização escolarizada do conceito de Função Exponencial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o presente trabalho buscou-se articular saberes de Matemática e Biologia presentes no Ensino Médio brasileiro. Na tessitura teórica, destacaram-se Morin (conhecimento como elaboração complexa), Machado (as redes de saberes) e Lévy (metáfora do hipertexto). Consideramos como eixos para a pesquisa: 1) Possibilitar ações didáticas envolvendo de forma complexa Biologia e Matemática; 2) Biologia e Matemática como objetos de atuação do professor e instrumentos para o estudante elaborar conhecimento. A análise dos resultados permitiu a identificação de duas categorias de integração entre Biologia e Matemática no Ensino Médio: 1) instrumentos matemáticos utilizados para descrever fenômenos biológicos; 2) a Matemática utilizada para a resolução de problemas da Biologia. O trabalho apresenta-se como estudo teórico que apontou temas dos ensinos de Biologia e Matemática no Ensino Médio favorecedores de articulações e ampliação do alcance didático dessas disciplinas no Nível Médio de ensino.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se considera que las nociones matemáticas tienen su origen en las ideas germinales que han surgido en diferentes momentos histórico-epistemológicos de la matemática. En la didáctica de la matemática las nociones tienen un papel preponderante como elementos articuladores de los saberes matemáticos que están en juego. En este trabajo se dan algunas evidencias del comportamiento epistemológico acerca de dos nociones: la promediación y la linealidad, las cuales no se perciben en la escuela en su estatus metamatemático. Aparecen en prácticamente todas las etapas escolares y su conceptualización en los diferentes niveles educativos es abordada de forma desarticulada, lo que propicia aprendizajes poco significativos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo forma parte de la primera etapa del Proyecto de Investigación “Análisis del Lenguaje Matemático y su influencia en los procesos de Validación en estudiantes universitarios de Ingeniería” realizado en forma conjunta por la Facultad de Agronomía UNCPBA (Azul-Argentina), y la Facultad de Química e Ingeniería UCA (Rosario-Argentina). Aquí se presentan y analizan los resultados de una encuesta piloto en pos de caracterizar las dificultades y obstáculos para la comprensión y traducción entre los registros de expresiones verbales o escritas (lenguaje proposicional) y su representación en lenguaje algebraico (uso de símbolos matemáticos) en los estudiantes que ingresan a la Universidad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo desde trabalho é relatar uma análise buscando identificar os conhecimentos matemáticos institucionalmente esperados pelo sistema educacional brasileiro para os estudantes concluintes do Ensino Médio do ano de 2011 tomando como base a avaliação do Exame Nacional do Ensino Médio – ENEM 2011, que atualmente é utilizada para o acesso pela grande maioria das universidades pública e privada. Para construir nosso instrumento de análise consideramos elementos da Teoria Antropológica do Didático de Chevallard (2001), as abordagens teóricas em termos de quadros segundo definição de Douady (1992) e níveis de conhecimento esperados dos estudantes conforme definição de Robert (1997). Nessa análise, buscamos identificar uma visão geral das relações pessoais institucionalmente esperadas dos estudantes, no que se refere aos conteúdos matemáticos, que tenham sido estudados pelos mesmos durante os 12 anos que compõem a Educação Básica no Brasil.