39 resultados para El ángel de la sombra
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este trabajo nos centramos en la descripción de estrategias de resolución de problemas en los que el razonamiento inductivo puede ser un heurístico. La resolución de diferentes tipos de problemas puede contribuir a la adquisición de la competencia matemática. Presentamos y comparamos parte de los resultados de dos problemas propuestos en una investigación más amplia (Cañadas, 2007).
Resumo:
A lo largo de la licenciatura de Matemáticas (que terminamos el curso pasado), el rigor ha sido la característica predominante: siempre se ha demostrado todo lo afirmado o utilizado. Este hecho hizo que no concibiéramos unas matemáticas sin demostraciones. Con este enfoque de las matemáticas iniciamos nuestro periodo de prácticas (correspondientes a la asignatura "Prácticas de la Enseñanza" de quinto curso) y nos enfrentamos por primera vez con la realidad educativa: no todo lo que se le explica a los alumnos debe ser objeto de demostración. Mediante esta comunicación pretendemos compartir nuestras reflexiones sobre el valor de la demostración en las matemáticas de la Enseñanza Secundaria.
Resumo:
En este trabajo utilizamos los razonamientos que llevan a cabo doce alumnos de Secundaria durante la resolución de una tarea matemática para detectar los errores en que incurren y las dificultades que encuentran en su ejecución. Se les propone la tarea en un contexto de entrevista semiestructurada en la que se guía a los alumnos por el camino a seguir. Entre los datos que se obtienen, se encuentran los errores aparecidos en el desarrollo de la tarea. El análisis de dichos errores se ha hecho siguiendo las clasificaciones de Evans (González, 1998) y Radatz (1979), y se conecta dichos errores con dificultades específicas siguiendo la clasificación de Socas (1997). Se concluye este trabajo con algunas reflexiones que conside-ramos interesantes para profesionales de la enseñanza de las matemáticas.
Resumo:
Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.
Resumo:
A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.
Resumo:
El presente trabajo tiene como objetivo dar a conocer a los educadores matemáticos y a los etnomatemáticos la existencia y la labor que ha desempeñado, en sus primeros cinco años, la Red Latinoamericana de Etnomatemática (RELAET) en América Latina, en la conformación y consolidación de una comunidad académica interesada en los aspectos sociales y culturales de la Educación Matemática.
Resumo:
En educación matemática el razonamiento cobra especial importancia, al mismo tiempo que su uso puede conducir a opiniones contrapuestas. Entender y dominar la demostración de un resultado matemático ayuda a su comprensión, facilita su empleo en el estudio de otras proposiciones y contribuye a la consolidación de un lenguaje matemático. Pero ¿puede sacarse partido a una demostración si se desconoce qué es, qué papel juega, y dónde reside su fuerza? ¿Deben frenarse los intentos de los alumnos de justificar a su modo los resultados matemáticos, ó modelarlos y sacarles mejor rendimiento? ¿No es mejor una aproximación medianamente fundada pero entendida, que aseveraciones bien formalizadas pero sin significado? Si además se considera la aportación que las nuevas tecnologías realizan a la enseñanza, es necesario una reflexión acerca de cómo se ve afectada, si es que se altera, la forma de validar el conocimiento matemático en el aula, además de establecer cuál es el rigor y la formalidad de las justificaciones que se desarrollan con estos instrumentos. En este reporte, se realiza un acercamiento teórico a diferentes modos de justificar las proposiciones matemáticas en el aula, y al papel que desempeña la tecnología en esta tarea. También se describe una experimentación llevada a cabo con profesores de matemáticas en formación en la que se analizaron las concepciones que tenían acerca del valor educativo que posee la calculadora TI-92 para, de algún modo, validar dichas proposiciones.
Resumo:
Este artículo presenta los resultados de una investigación, realizada en la escuela media, sobre el uso de la lengua natural en contexto matemático, y sobre la producción de modelos externos en torno a las concepciones profundas de algunos conceptos elementales que poseen los alumnos. Con una técnica que invita a los alumnos a asumir un papel diferente del que usualmente juegan en la clase de matemáticas, se intentaba empujarlos a escribir acerca de asuntos matemáticos elementales en un lenguaje coloquial, sin los aparatos formales que con frecuencia exhiben. No obstante haber acogido bien el juego del cambio de papel que les propusimos y haber respondido a las situaciones problemáticas usando lengua natural, la mayoría de los alumnos presentó la tendencia a completar su respuesta inicial con una respuesta formal, a menudo vacía, que tenía poco que ver con la tarea. En casos en que los alumnos no usaron aparatos formales para responder se identificaron modelos que resultan interesantes en el plano de verificación de los aprendizajes.
Resumo:
En el análisis del discurso matemático manifiesto en un texto de álgebra escolar, hemos encontrado que el dominio de la variable es un concepto presente desde la aparición de las expresiones generalizadoras de operaciones, relaciones y propiedades de los números reales, que tan sólo se explicita en el estudio del álgebra de las expresiones algebraicas. Este concepto, junto con el de conjunto de referencia de una expresión y con el de conjunto solución, juega un papel protagónico en diferentes contextos del álgebra escolar, que le permiten configurarse como una variable didáctica imprescindible en la significación de muchos otros conceptos algebraicos.
Resumo:
El trabajo parte de una inquietud que se centra en dos aspectos: el uso indistinto que los estudiantes dan a las letras para resolver ecuaciones, para hallar equivalencias algebraicas y para abordar situaciones de variación. Se involucra la función cuadrática como objeto matemático. Esto, al menos por dos razones: en primera instancia porque fue la temática en la cual venían trabajando los estudiantes al momento de realizar el proyecto, y en segundo lugar porque la función cuadrática puede y ha sido interpretada como modelo matemático de procesos de variación cuadrática (Mesa & Ochoa, 2009; Posada & otros, 2006). Analizan diferentes usos que dan los estudiantes a las letras en determinadas tareas.
Resumo:
Presentamos los primeros resultados de un estudio exploratorio sobre el desarrollo del conocimiento didáctico de futuros profesores de matemáticas con respecto a las nociones de estructura conceptual y sistemas de representación. Estos resultados se obtuvieron al codificar y analizar las grabaciones de clase y las producciones de estudiantes del último curso de Matemáticas en una asignatura de didáctica de las matemáticas. Se encontró que las producciones y las actuaciones de los alumnos pasan por diferentes estados que permiten identificar tanto algunas dificultades, como momentos en los que surgen reorganizaciones conceptuales.
Resumo:
Expongo una conceptualización de aprendizaje desde la teoría de la práctica social que se concreta en una propuesta sobre cómo ver el aprendizaje de la demostración en geometría euclidiana plana. Las ideas se ilustran con fragmentos de la actividad académica realizada por estudiantes de segundo semestre de Licenciatura en Matemáticas. La conferencia está dirigida a futuros profesores, profesores de matemáticas de secundaria y formadores de docentes.
Resumo:
Es nuestro interés en este curso discutir algunos aspectos teóricos y metodológicos relativos a la objetivación del conocimiento matemático, específicamente el relacionado con el concepto de función y con el concepto de parábola. Haremos esta discusión desde algunos resultados obtenidos de la investigación “El conocimiento matemático: desencadenador de interrelaciones en la aula de clase”. En dicho estudio empleamos una metodología a la luz del paradigma cualitativo, bajo un enfoque crítico-dialéctico y desde una investigación colaborativa. Nos apoyamos teóricamente en autores que asumen una perspectiva sociocultural de la Educación y de la Educación Matemática, por ejemplo, Bajtin (2004, 2009), Caraça (1984), Moura (2001, 2010) y Radford (2004, 2006, 2008). Este estudio nos posibilitó comprender, entre otras ideas, que los conceptos que cada alumno objetivó con respecto al objeto función y al objeto parábola no fueron únicos; como no pueden serlo el proceso de objetivación, ni los conceptos mismos.
Resumo:
La introducción a la clase de matemáticas de la calculadora TI 92 Plus y otros dispositivos, tales como el CBR, están generando una nueva cultura matemática, caracterizar algunos rasgos de éste fenómeno educativo en la modelación del movimiento pendular es el propósito central de la presente investigación. El trabajo de los estudiantes permitió observar en la práctica los constitutivos del marco teórico del proyecto de incorporación de nuevas tecnologías al currículo de matemáticas de Colombia, como son: mediación instrumental, representaciones ejecutables, cognición situada, solución de problemas, fluidez algorítmica y fluidez conceptual.
Resumo:
La mayoría de personas involucradas directa o indirectamente con la Educación Matemática estamos de acuerdo en que la comprensión de conceptos es el aspecto más relevante en la enseñanza y el aprendizaje de las Matemáticas. Nuestro objetivo es diseñar y aplicar una entrevista semiestructurada de carácter socrático, para describir cómo comprenden el concepto de Continuidad cuatro estudiantes de cursos de cálculo diferencial en Instituciones oficiales de la ciudad de Medellín. Para alcanzar este objetivo utilizamos la entrevista semiestructurada de carácter socrático, como instrumento principal de recolección de información, así como observaciones y materiales escritos; la entrevista a su vez se convirtió en una estrategia metodológica para mejorar la comprensión de los estudiantes, en el marco de la Teoría de Pirie y Kieren, nuestro Marco Teórico.