20 resultados para Dierdorf, Dan
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este capítulo se dan indicaciones para escribir un manuscrito y se presentan algunos ejemplos de artículos enviados para su publicación. En este documento he resumido algunas de las normas para la preparación de un manuscrito mediante un procesador de texto informático y para la escritura de las diferentes partes de las que debe constar un artículo.
Resumo:
En este documento, describo algunos aspectos del significado con el que usamos la expresión "análisis didáctico" en la asignatura Didáctica de la Matemática en el Bachillerato de la Universidad de Granada. En particular, introduzco el análisis didáctico como un nivel del currículo y establezco su papel en la identificación, organización y selección de los múltiples significados de un concepto matemático para efectos de diseñar, llevar a la práctica y evaluar unidades didácticas. Estas consideraciones dan lugar a algunas reflexiones sobre el papel del análisis didáctico en la formación inicial de profesores de matemáticas de secundaria.
Las igualdades incorrectas producidas en el proceso de traducción algebraico: un catálogo de errores
Resumo:
Propongo un catálogo para los errores que puedan encontrarse al realizar el proceso de traducción algebraico. El catálogo consta de tres categorías: errores en el uso de letras, errores en la construcción de expresiones algebraicas y errores en la construcción de la igualdad. Constaté la validez del catálogo con las igualdades incorrectas producidas por 258 estudiantes de bachillerato que trabajaron 13 problemas. Encontré que las producciones persistentes dan cuenta de una parte sustantiva del error total y que estas producciones contienen errores de las categorías antes citadas. Además, determinados errores se podrían asociar con tipos de problemas.
Resumo:
Este libro es resultado de la experiencia vivida por un grupo de investigadores de "una empresa docente", centro de investigación en educación matemática de la Universidad de los Andes, Colombia, y un grupo de directivos-docentes y profesores de matemáticas en el marco del proyecto PRIME I. El proyecto reunió a quince colegios de Bogotá, entre distritales y privados, para realizar una mirada sobre algunos elementos que pueden ser factores relevantes para la calidad de la formación matemática que los colegios dan a sus estudiantes. Otro objetivo del proyecto era diseñar en detalle una estrategia de desarrollo profesional, aplicarla y evaluar sus efectos en los participantes. La naturaleza de la problemática que se aborda en este proyecto requiere que en los colegios se genere una dinámica que favorezca los procesos de reforma educativa para el mejoramiento de la calidad de la educación matemática en secundaria. Para ello es necesario involucrar tanto a directivos como a profesores de matemáticas en actividades que promuevan la reflexión de ellos acerca de su propia práctica --directiva y docente, respectivamente-- y que potencien su capacidad para ser gestores y participantes activos del cambio. El anterior es uno de los supuestos que fundamentan la estrategia de desarrollo profesional aplicada en el proyecto. En este libro se presenta una visión completa de la estrategia de desarrollo profesional implementada con el grupo de directivos y profesores de los colegios participantes en el proyecto PRIME I. El libro está organizado en tres secciones. La primera presenta las bases que sustentan el esquema de desarrollo profesional, describe con algún detalle en qué consistió la estrategia y cómo estuvo secuenciada, y discute algunas de las tensiones que se presentaron en la aplicación de la estrategia al involucrar a los participantes en actividades de investigación e innovación. La segunda sección del libro incluye los artículos producidos por algunos de los directivos de los colegios participantes, y la tercera contiene los artículos de algunos de los profesores acerca de su experiencia de indagación e innovación en sus aulas de clase.
Resumo:
Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.
Resumo:
El SND ha sido considerado un aspecto básico dentro del currículo de matemáticas, debido a su funcionalidad en los procesos de escritura de cantidades y en el desarrollo de algoritmos de operaciones básicas. Acorde a ello, la escuela dedica gran cantidad de tiempo al proceso de escritura y reconocimiento de cantidades, a la comparación de cantidades y al reconocimiento del valor posicional de una cifra, pero aun así los estudiantes no logran comprender los principios báscos del sistema. La presente propuesta se basa en la sistematización de una secuencia de actividades de aula orientada al reconocimiento de los principios que estructuran y dan sentido al S.N.D. como es el proceso de equivalencias entre las unidades del sistema y el reconocimiento del valor de posición de una cifra dada. Para llevar a cabo el proceso de sistematización de experiencias, se retomaron los principios metodológicos de la investigación acción educativa. Estas orientaciones permiten una búsqueda continua de alternativas de trabajo, y a la vez integran la exploración reflexiva que el docente hace de su práctica incidiendo en la lanificación y el mejoramiento de la misma, lo cual constituye un elemento esencial para la formación investigativa de los futuros docentes de matemáticas
Resumo:
En este trabajo, los autores se cuestionan el surgimiento de una conjetura en la resolución de un problema en el contexto del pensamiento matemático avanzado, en una comunidad de práctica de estudiantes para profesor de matemáticas. Mediante una investigación de diseño, se logró concluir que las refutaciones e interacciones que se dan de forma individual y dentro de las comunidades de aprendizaje, permiten que las intuiciones se movilicen, estableciendo un lenguaje común y una empresa compartida (Wegner, 2001), en la resolución de problemas.
Resumo:
El trabajo parte de una inquietud que se centra en dos aspectos: el uso indistinto que los estudiantes dan a las letras para resolver ecuaciones, para hallar equivalencias algebraicas y para abordar situaciones de variación. Se involucra la función cuadrática como objeto matemático. Esto, al menos por dos razones: en primera instancia porque fue la temática en la cual venían trabajando los estudiantes al momento de realizar el proyecto, y en segundo lugar porque la función cuadrática puede y ha sido interpretada como modelo matemático de procesos de variación cuadrática (Mesa & Ochoa, 2009; Posada & otros, 2006). Analizan diferentes usos que dan los estudiantes a las letras en determinadas tareas.
Resumo:
En este documento, describo algunos aspectos del significado con el que usamos la expresión “análisis didáctico” en la asignatura Didáctica de la Matemática en el Bachillerato de la Universidad de Granada. En particular, introduzco el análisis didáctico como un nivel del currículo y establezco su papel en la identificación, organización y selección de los múltiples significados de un concepto matemático para efectos de diseñar, llevar a la práctica y evaluar unidades didácticas. Estas consideraciones dan lugar a algunas reflexiones sobre el papel del análisis didáctico en el diseño de planes de formación inicial de profesores de matemáticas de secundaria, en la identificación de las capacidades que califican la competencia de planificación del futuro profesor de matemáticas y en la caracterización de su conocimiento teórico, técnico y práctico.
Resumo:
En este trabajo se aportan los resultados de una investigación, realizada con cuatro grupos de estudiantes de segundo de bachillerato de la Comunidad Autónoma Andaluza, sobre la incidencia de las pruebas de acceso a la universidad (PAU) en los significados de la integral definida, en cuanto a los posibles sesgos producidos. En primer lugar se detectan los significados de referencia que se comparan posteriormente con los obtenidos en las PAU, después se analiza el significado implementado en el aula. Por último, se dan algunas implicaciones para la enseñanza de la integral definida.
Resumo:
En este trabajo resumimos un estudio empírico llevado a cabo con estudiantes de bachillerato con la intención de explorar y describir los distintos significados vinculados al concepto de límite que los estudiantes pueden poner de manifiesto al abordar tareas que involucran la relación entre varios sistemas de representación. Describimos algunos aspectos del lenguaje utilizado por los escolares en sus interpretaciones, profundizando en las concepciones intuitivas a las que dan lugar, seguido de la exploración del manejo de otros sistemas de representación por parte de los escolares como el simbólico a la hora de interpretar gráficas de funciones.
Resumo:
En las prácticas de enseñanza es común factorizar polinomios usando un conjunto de reglas para manipular expresiones algebraicas con lápiz/ papel. Esto lleva a encasillar a la factorización a una sola representación matemática, la algebraica, y a un proceso matemático, la formulación, comparación y ejercitación de procedimientos. Por lo que el tiempo de trabajo requerido por un estudiante para expresar un polinomio en su forma factorizada con lápiz/papel no sea corto. Lo anterior puede incidir en las escasas conexiones que se dan entre la factorización y otros conceptos. Sin embargo, la integración de calculadoras simbólicas podría dar paso a mirar cómo lograr otras situaciones de enseñanza que fortalezcan las conexiones de la factorización con otros conceptos, como los ceros de un polinomio.
Resumo:
La evaluación es tema fundamental en la discusión sobre la educación matemática y sus referentes incorporan aspectos conceptuales, sino metodológicos, didácticos de la matemática escolar acorde con los lineamientos vigentes. Tal es el caso de la evaluación por competencias en el Examen de Estado, que ha sido objeto de análisis y críticas sobre la manera como ha interpretado y diseñado el instrumento de evaluación, en particular las preguntas que dan cuenta de las competencias interpretativa, argumentativa y propositiva en matemáticas. Sabemos que su análisis permite conceptualizar cada vez mejor la evaluación y así mismo ofrecer a la comunidad de matemática educativa otros elementos de reflexión sobre lo que nos ocupa: cualificar la educación básica y media.
Resumo:
Se considera que las nociones matemáticas tienen su origen en las ideas germinales que han surgido en diferentes momentos histórico-epistemológicos de la matemática. En la didáctica de la matemática las nociones tienen un papel preponderante como elementos articuladores de los saberes matemáticos que están en juego. En este trabajo se dan algunas evidencias del comportamiento epistemológico acerca de dos nociones: la promediación y la linealidad, las cuales no se perciben en la escuela en su estatus metamatemático. Aparecen en prácticamente todas las etapas escolares y su conceptualización en los diferentes niveles educativos es abordada de forma desarticulada, lo que propicia aprendizajes poco significativos.
Resumo:
Nuestras investigaciones dan cabida, con los mismos métodos, a diferentes nociones del límite, como límite finito de una sucesión o límite finito de una función en un punto. Consideramos tres elementos relacionados: fenomenología, sistemas de representación y pensamiento matemático avanzado. En la primera parte lo explicamos y presentamos ideas de otros marcos teóricos. Hemos usado las mismas herramientas metodológicas para descubrir y estudiar los fenómenos organizados por tres casos de límite finito y para reconocer esos fenómenos en libros de texto. Además, hemos desarrollado instrumentos para mostrar los fenómenos que emplean alumnos y profesores. En la segunda parte describimos los métodos usados para extraer información de libros de texto y alumnos.