13 resultados para Aprendizaje de las ciencias experimentales
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La propuesta que hoy presentamos, es el resultado de varios años de implementación del proyecto liderado por el Ministerio de Educación, las Universidades y algunas Secretarías de Educación, conocido como Incorporación de Nuevas Tecnologías al Currículo de las Matemáticas de la Educación Básica y Media de Colombia con la mediación de los Software Interactivos como Cabri y los accesorios externos como sensores para toma de datos. Al definir el objeto de las matemáticas, encontramos que su aprendizaje no sólo se basa en formar el espíritu lógico, sino también proporcionar herramientas para la solución de problemas reales. Por lo tanto, se debe combinar el rigor lógico con la funcionalidad, puesto que además de la lógica formal las matemáticas proporcionan también un poderoso conjunto de herramientas que posibilitan describir, explicar, predecir y modelar situaciones no sólo del mundo científico, sino también de la vida cotidiana (significación). Es por esto, que juega un papel importante implementar en su didáctica, el referirla al mundo de la naturaleza, de las otras ciencias (interdisciplinariedad), y de la cotidianidad del hombre. Es fácil ver los nexos que tienen las Ciencias Naturales con el mundo extraescolar, lo que permite construir el conocimiento a partir de proyectos en donde se manipule en forma directa el mundo real. Las temáticas que se trabajan en esta propuesta además de permitir lo anterior, proporcionan el estudio formal de las matemáticas y el desarrollo de sus diferentes pensamientos. Los ejes temáticos trabajados son: Cinemática, Luz, Electricidad, Calor y Energía y propiedades químicas de las sustancias, entre otras.
Resumo:
Este curso presenta un avance en la construcción de escenarios educativos para el aprendizaje de las matemáticas desde el cual se ofrece posibilidades a los estudiantes para encontrar las razones del por qué y para qué del propósito del proceso educativo. Los escenarios de aprendizaje construidos son las relaciones entre espacialidad, identidad y territorialidad, y la cual integra como eje temático contenidos de áreas curriculares como ciencias naturales, educación física, matemáticas, ciencias sociales y lenguaje. Esta relación permite identificar problemas que tienen contenidos importantes desde una perspectiva del aprendizaje, de la importancia sociológica de aprender en la escuela y de la posición misma de los niños.
Resumo:
Este documento es una síntesis de una propuesta didáctica para modelar estadísticamente, errores de medición en las ciencias naturales. El origen de este trabajo fue motivado por cuatro cuestiones: la primera es la enseñanza del error como requisito para el currículo, los estándares curriculares establecen que un error es un punto en uno de los caminos hacia la verdad y, cada punto en ese camino, es un error de mayor o menor magnitud. Se vive en un mundo lleno de incertidumbres donde a nivel físico no existen verdades absolutas, por tanto, se vive con el error permanentemente, la segunda es la escasez de recursos didácticos para atender la enseñanza de error de medición en el aula teniendo en cuenta la revisión bibliográfica realizada, la tercera es el manejo interdisciplinar que se le puede dar al error de medición en el aula, y por último, es el uso de herramientas tecnológicas para el desarrollo de modelos o representaciones visuales acerca de éste tema en el aula, la importancia del error de medición en las ciencias y el tratamiento estadístico del error de medición en el aula, como instrumento para evaluar de forma cuantitativa la precisión y exactitud de los resultados obtenidos a partir de procesos experimentales.
Resumo:
Entre las principales deficiencias que se presentan en la actualidad en nuestra práctica educativa, relacionadas con el control y la evaluación, están considerar únicamente la evaluación del producto o resultado final, identificar control con calificación, con "dar una nota" y la realización del control en un sólo sentido (el del profesor). Existe una opinión bastante generalizada en cuanto a que los procedimientos de elaboración de pruebas, aplicación y calificación de las mismas son equivalentes al proceso de evaluar. En general se reduce el papel de la evaluación a una de sus funciones. Pero realmente, ¿se evalúa en nuestra enseñanza?, desde nuestro punto de vista este es un aspecto que requiere ser estudiado. En el taller se analizó la problemática de la evaluación del aprendizaje y se consideraron algunas técnicas para la evaluación de los contenidos matemáticos. En ambas sesiones se emplearon técnicas participativas siguiendo la lógica de identificación de problemas, profundización en el conocimiento y propuesta de alternativas.
Resumo:
Este artículo es respuesta a la pregunta formulada por Jeremy Kilpatrick, "¿Qué dicen la investigación y la teoría acerca de la enseñanza y el aprendizaje de las matemáticas que se plasman en los documentos de los Estándares [del NCTM] y en varias de las críticas hechas a ellos?" (Kilpatrick, 1997). Me centro aquí en aquellas necesidades de los alumnos, que según las teorías disponibles, son la fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. En este artículo se identifican diez de tales necesidades. Mi análisis se basa en el supuesto de que todas ellas son universales aunque se puedan expresar de modos diferentes en diferentes individuos y en diferentes edades. Para cada una de las diez necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto? A lo largo del artículo, señalo ciertos dilemas inherentes al proyecto de enseñar matemáticas y sostengo que aunque algunos de los problemas no parezcan solubles, quizás su impacto se pueda reducir considerablemente con sólo mantenernos conscientes de su existencia. Este artículo se ha dividido en dos partes para su presentación en la Revista. Aquí se incluye lo referente a las cinco primeras necesidades identificadas; en el siguiente número se expondrá lo relativo a las otras necesidades.
Resumo:
Esta es la segunda parte del artículo1 cuya presentación se inició en el número anterior de esta revista (pp. 95-140). Se incluye aquí lo referente a otras cinco necesidades de los alumnos, que según las teorías disponibles, son una fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. Para cada una de tales necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto?.
Resumo:
El presente documento tiene como finalidad el mostrar el proceso enseñanza- aprendizaje dado en el colegio I. T. I. Francisco José de Caldas en una práctica docente, abordando tres campos de pensamiento matemático: numérico, métrico y geométrico a partir de una situación fundamental explicitada en algunos juegos. Esta metodología se usa con el fin de hacer que los estudiantes obtengan un aprendizaje significativo de las temáticas propuestas, por medio de un proceso lúdico y dinámico; su objetivo es reflexionar acerca de los propósitos que tiene el maestro frente al proceso que enfrentan los estudiantes, sin pensar solamente en abordar muchos conocimientos para lograr todo lo propuesto por el currículo, sino que, independientemente de esto, se buscó que todo lo que se dio a conocer quedara completamente claro.
Resumo:
En este trabajo se reportan los resultados obtenidos en un estudio de tendencias realizado sobre el currículo escolar mexicano de ciencias naturales y exactas en el nivel educativo medio. Para la realización de este estudio se utilizó una metodología documental acompañado de entrevistas estructuradas a expertos en materia curricular. El propósito fue caracterizar los diferentes momentos por los que ha transitado el currículo en las últimas cuatro décadas y establecer posibles directrices.
Resumo:
El presente trabajo plantea el estudio del conocimiento matemático de la cultura maya desde la aproximación socioepistemológica, ya que se aporta una visión diferente de las que suelen abordarse en la literatura: antropológica o etnográfica entre otras. Se plantea el estudio de prácticas sociales que se encuentran en la cultura maya y que son a la vez generadoras de conocimiento matemático.
Resumo:
La calculadora graficadora como herramienta tecnológica ofrece la posibilidad de despertar el interés del estudiante y estimular su entendimiento, y en este trabajo se analiza la puesta en escena de una situación didáctica como nota de clase (Lluck, 2004). Conformada con una secuencia de actividades para ser trabajadas por los alumnos dentro y fuera del aula. Esta secuencia se diseña de tal forma que al ponerla en práctica es posible hacer matemáticas, considerando que dichos saberes matemáticos son necesarios para ser un ciudadano que se desempeñe con éxito en su labor y comprenda la importancia de la matemática en su vida actual y futura.
Resumo:
La matemática en el contexto de las ciencias es una línea de investigación que reflexiona acerca de la vinculación que debe existir entre la matemática y las ciencias que la requieren, está constituida por cuatro fases: la curricular, la didáctica, la epistemológica y la cognitiva. En este artículo se presenta la fase didáctica. Esta fase incluye una estrategia didáctica (denominada matemática en contexto)que presenta conocimientos integrados a los alumnos a partir de una situación problémica de otras disciplinas, que al tratar de resolverla el estudiante se encuentra con la necesidad de tener nuevos conocimientos, lo cual da apertura a que el estudiante esté interesado en otros tópicos matemáticos. Para lograr la vinculación de la matemática con otras ciencias se describe un proceso metodológico a través de seis de las etapas de la matemática en contexto. Con esta estrategia el modelar matemáticamente está presente todo el tiempo, por lo que se presentan los resultados de una investigación que caracteriza y clasifica a los modelos matemáticos. Asimismo, los modelos son un elemento común a la matemática en contexto y a la resolución de problemas, por lo que se muestran las diferencias sustancias entre ambas estrategias.
Resumo:
Este artículo tiene como objeto de investigación el aprendizaje y como objeto matemático el concepto de función con estudiantes sordos de educación básica y media, con el propósito de mostrar cómo el problema social y cultural que tiene esta población para el aprendizaje de las matemáticas puede ser minimizado mediante la intervención del profesor, a partir de secuencias didácticas de enseñanza y la asistencia de un entorno informático. Para ello, se ha utilizado como marco teórico las situaciones didácticas de Brousseau y los registros de representación semiótica de Duval, y como metodología la Ingeniería didáctica.
Resumo:
En el artículo que presentamos se revisan las investigaciones y trabajos relacionados con el papel que desempeñan las diferencias de sexo, en el aprendizaje de las matemáticas. Después de señalar las distintas conjeturas que se han ofrecido como explicación a las diferencias en logros y expectativas, se destaca la influencia social y cultural: condicionantes sociales, influencias grupales, la propia estructura de las matemáticas y la de la propia escuela y los profesores.