448 resultados para Funções quaterniônicas
Resumo:
En este trabajo presentamos el análisis de algunas tareas propuestas a estudiantes de grado 11 en torno a la noción de tasa media de variación y tasa instantánea de variación. La propuesta se diseño utilizando como metodología de investigación el aporte de la escuela francesa en torno a las situaciones didácticas de Brousseau y la ingeniería didáctica. Para el análisis de las tareas se utilizaron las unidades de análisis propuestas por Romero (1998) y Camargo (2001); estudio del contenido, estudio de la comprensión y análisis de la interacción didáctica.
Resumo:
En el presente artículo se considera el tema de la proporcionalidad en distintos niveles y dentro de ámbitos diferentes. En primer lugar, se trata la proporción en el campo de las ecuaciones mediante unos ejemplos extraídos de la historia de las matemáticas. En segundo lugar, se presentan ejemplos relativos a las proporciones en temas de geometría plana y medida de ángulos dentro de un contexto astronómico. En dicho marco, se elabora una maqueta del sistema solar y, posteriormente, se estudian los movimientos de la Tierra para determinar su periodo de rotación y calcular, según la precesión terrestre, estrellas candidatas a ser "la polar del futuro", esto es, la estrella más próxima al polo norte celeste. En general, el artículo muestra diversas actividades que cabe desarrollar dentro del aula, en un ambiente de taller, con miras a potenciar la interdisciplinariedad y el contacto de las matemáticas con el mundo real.
Resumo:
Este artículo describe la investigación-acción que en 1994 realizaron los directivos-docentes del Colegio Distrital La Merced en el marco del Proyecto MEN-EMA. Indagar sobre el funcionamiento del área de matemáticas del colegio facilitó una mejor comprensión y un encuentro de mayor coherencia con la realidad que se vive en la institución en torno a la enseñanza y el aprendizaje de las matemáticas. Se hizo evidente la necesidad de recuperar y aprovechar al máximo los espacios destinados a la discusión, análisis y propuestas sobre el área para consolidar un proceso dinámico que favorezca el trabajo académico, el cambio de actitud y la actualización permanente con miras a incidir en el mejoramiento de la enseñanza y el aprendizaje de las matemáticas en el colegio. Los directivos-docentes descubrieron la importancia de participar -en cuanto líderes y facilitadores- en los procesos pedagógicos que se viven al interior del área.
Resumo:
Con base en el enfoque de resolución de problemas, se describe una experiencia vivida por un grupo de maestros en la que se parte de un problema que es resuelto sin mayor dificultad, pero que, al realizar la mirada retrospectiva, da lugar a un nuevo problema que invita a los participantes a un viaje.
Resumo:
Teniendo en cuenta que la educación tradicional es vista como un modelo pedagógico que entre otras: i) se enfoca en desarrollar en los estudiantes conocimientos algorítmicos, ii) hace un énfasis en la ejercitación de procedimientos, iii) no tiene en cuenta el desarrollo social del individuo dentro de una comunidad y tampoco se enfoca en el proceso que tiene un estudiante al desarrollar una actividad con determinado objeto matemático; hoy en día se propende por buscar perspectivas que le permitan a los estudiantes encontrarle sentido a las actividades que el profesor lleva al aula. A la luz de lo anterior, en Colombia han surgido diversas tendencias que han buscado la renovación pedagógica, didáctica y conceptual en la educación escolar, enmarcadas –la mayoría de estas propuestas– dentro de la idea de que los estudiantes se relacionen directamente con el conocimiento, mientras que el profesor toma una postura de orientador del proceso de aprendizaje del estudiante. Teniendo en cuenta lo anterior, muchos profesores han buscado cambiar sus prácticas tradicionales de enseñanza, un ejemplo de ello lo encontramos en el colectivo de profesores de la Institución Educativa Distrital Colegio Paulo Freire de la localidad de Usme (Bogotá, Colombia); donde los profesores –en concordancia con las ideas del pedagogo Paulo Freire– comparten, como parte de su proyecto educativo, el hecho de ver a la enseñanza como un proceso que debe generar en los estudiantes una comprensión crítica de la realidad social, política y económica en la que él está inmerso.
Resumo:
En el presente trabajo nos interesa principalmente determinar qué concepciones sobre el infinito han desarrollado estudiantes de último año de secundaria y estudiantes universitarios de primer año. Aunque este concepto no aparece como un contenido específico del currículo de matemáticas, sobre él se desarrollan diferentes concepciones en escenarios no escolares que de una u otra manera afectan la construcción de conceptos matemáticos relacionados con él. Además, nos interesa confrontar las ideas que surgen cuando se habla de infinito en lo grande e infinito en lo pequeño, ya que aunque se trata de la construcción de un mismo concepto sus concepciones emergen de manera diferente en la mente de los individuos (Núñez, 1997). Lo que se puede justificar considerando que es más fácil comprender el infinito en lo grande como un proceso que continua sin parar y que no tiene fin, que el infinito en lo pequeño, en donde a pesar de conservarse el hecho de un proceso sin fin, aparece una nueva situación que sugiere que dicho proceso tiene un límite.
Resumo:
Se busca dar solución a la pregunta ¿Qué procedimientos de resolución utilizan los estudiantes de quinto grado de educación básica primaria cuando resuelven problemas de isomorfismo de medidas? Para ello se realiza un análisis de los procedimientos mostrados por estudiantes de grado quinto al resolver un cuestionario de problemas de isomorfismo de medidas. Este análisis se realiza a partir de seis categorías construidas de acuerdo a los referentes teóricos de Vergnaud. En la relación cuaternaria se categorizaron los procedimientos en tres clases: el procedimiento funcional, escalar y de iteración de unidades. En la relación ternaria se categorizaron los procedimientos en multiplicación, división y suma repetida.
Resumo:
La investigación educativa nos proporciona conocimiento basado científicamente acerca del proceso de aprendizaje por parte de los estudiantes, así como de las dificultades y errores más comunes entre ellos. Sin embargo, este conocimiento no siempre se pone a disposición de los profesores directamente implicados en la enseñanza en las aulas, de manera que no se aplica ni se aprovecha debidamente. En este trabajo, pretendemos ofrecer a los profesores algunos resultados obtenidos de la investigación en el campo de la didáctica de la estadística, con el fin de contribuir a facilitar y mejorar su práctica docente. Si bien los resultados que se presentan se han obtenido en el contexto español, los hallazgos son lo suficientemente generales como para que puedan ser utilizados por profesores de otros contextos.
Resumo:
En muchos colegios las reuniones de área son el único espacio programado por la institución para la interacción entre profesores del área. El Colegio Santafé de Bogotá es un ejemplo de ellos. En éste, las reuniones de área tenían un carácter eminentemente informativo, situación que parecía ser la causa de que el grupo de profesores de matemáticas no estuviera suficientemente cohesionado para el trabajo y de que en las reuniones de área no se trataran temas relacionados con asuntos propios de la enseñanza de las matemáticas. Con la consciencia de que lograr el consenso del equipo de profesores en cuanto a aspectos fundamentales para la formación matemática, es el primer paso de un proceso de largo plazo para mejorar la enseñanza de las matemáticas, se realizaron acciones tendientes a iniciar ese proceso y a promover el tratamiento de temas propios de la educación matemática entre los profesores. La experiencia que se narra en este artículo da cuenta de lo que sucedió en tres reuniones de área: la primera, de motivación; la segunda, de indagación y consenso; y la última, de lectura, debate y reflexión. Entre los resultados obtenidos con las acciones implementadas vale la pena destacar que se logró dentro del grupo de profesores explicitar inquietudes u opiniones en cuanto al quehacer matemático y unificar criterios en lo referente a la formación de aspectos relevantes de la matemática. Por otro lado, el trabajo mismo de investigación deja en quien lo realiza una lección sobre el continuo cuestionamiento y reflexión que se debe hacer sobre la propia práctica.
Resumo:
El proceso de indagación que se describe en este artículo se llevó a cabo con el fin de obtener información que nos ayudara en nuestro quehacer pedagógico. Exploramos la opinión de los alumnos sobre los aportes que el estudio de las matemáticas les ha brindado en su formación, y comparamos los resultados obtenidos en los distintos grados en los que se hizo la exploración. El artículo presenta una descripción del contexto en el que ocurrió la experiencia, incluye la justificación que nos condujo a la definición concreta del problema y del objetivo, expone la forma como se recolectó y organizó la información, y finaliza con algunas impresiones y reflexiones sobre los resultados obtenidos.
Resumo:
Este artículo presenta la experiencia vivida en la elaboración y aplicación de una secuencia de actividades, que a través de promover el análisis cuidadoso del enunciado y el uso de las representaciones, pretenden lograr un mejor desempeño por parte de los estudiantes en la resolución de problemas.
Resumo:
Este artículo presenta los resultados de una investigación, realizada en la escuela media, sobre el uso de la lengua natural en contexto matemático, y sobre la producción de modelos externos en torno a las concepciones profundas de algunos conceptos elementales que poseen los alumnos. Con una técnica que invita a los alumnos a asumir un papel diferente del que usualmente juegan en la clase de matemáticas, se intentaba empujarlos a escribir acerca de asuntos matemáticos elementales en un lenguaje coloquial, sin los aparatos formales que con frecuencia exhiben. No obstante haber acogido bien el juego del cambio de papel que les propusimos y haber respondido a las situaciones problemáticas usando lengua natural, la mayoría de los alumnos presentó la tendencia a completar su respuesta inicial con una respuesta formal, a menudo vacía, que tenía poco que ver con la tarea. En casos en que los alumnos no usaron aparatos formales para responder se identificaron modelos que resultan interesantes en el plano de verificación de los aprendizajes.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
Sobre la base de dos casos de modelos matemáticos aplicados a problemas auténticos, sugeriré algunas consecuencias de usar las matemáticas. Para ver si las reflexiones sobre estos asuntos se pueden introducir en el aula observé algunos cursos de modelado en escuelas danesas de educación superior. Encontré que las reflexiones eran realizadas en unas pocas circunstancias aisladas, y que generalmente estaban separadas de la actividad de modelaje de los estudiantes. Sin embargo, observé algunas diferencias interesantes entre dos de los cursos. En uno, las experiencias a partir del modelaje estaban en alguna medida influyendo las reflexiones que los estudiantes adelantaban. En el otro, las reflexiones sobre modelos eran claramente opuestas tanto al modelaje como a la actividad matemática de los estudiantes -opuesta en contenido lo mismo que como tipo de discurso.
Resumo:
En este artículo se expone una propuesta de enseñanza para presentar el teorema de Pitágoras a alumnos de educación media. También se refieren algunos detalles del análisis que fundamentó la propuesta. Esta incluye trabajo de los estudiantes en torno a la desigualdad triangular, a la relación pitagórica y a expresiones algebraicas.