58 resultados para No-hacer
Resumo:
El estudio de las funciones sinusoidales en la secundaria y en el bachillerato se suele realizar desde una perspectiva alejada de la experimentación y la intuición. En este artículo pretendemos mostrar una propuesta de trabajo para introducir las funciones sinusoidales de una manera intuitiva y experimental, en una fase previa a su estudio analítico, a través de algunos ejemplos de la vida cotidiana como andar, parpadear, fregar el suelo o hacer abdominales.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
Se presentan dos investigaciones que se están desarrollando y que surgen del interés por hacer más accesible el álgebra escolar a los estudiantes. Se describen los objetivos de investigación, el método, el análisis de datos, los resultados más relevantes y las conclusiones de cada una de las investigaciones. Se destacan las implicaciones que pueden tener para la docencia en los niveles educativos en los que se lleva a cabo (educación secundaria y educación primaria, respectivamente).
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, y examinado el aprendizaje del estudiante en el análisis cognitivo, en el aná-lisis de instrucción vamos a estudiar qué medios dispone el profesor para lograr sus fines. El foco de atención será la enseñanza. Se trata de hacer una descripción de los medios que va a poner en práctica el profesor para lograr sus expectativas de aprendizaje.
Resumo:
En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión.
Resumo:
Debo empezar por hacer referencia a los amigos y colegas de trabajo, en particular al grupo de investigación Matemáticas Escolares de la Universidad Distrital Francisco José de Caldas (Matescud) pues del intercambio con ellos aparecen todas las ideas que expondré. La Asociación Colombiana de Matemática Educativa ha decidido abordar en este encuentro un aspecto crucial para la mejor comprensión de las peticiones y obligaciones que se formulan en los Lineamientos Curriculares para Matemáticas (MEN, 1998). Entre las peticiones y obligaciones aludidas se encuentra, por ejemplo:1. La adopción de una perspectiva didáctica centrada en la teoría de la transposición didáctica 2. La adopción de una perspectiva cultural de la educación matemática 3. La adopción como uno de los propósitos de formación para los estudiantes el de su desarrollo de pensamiento matemático y de manera particular el desarrollo de su pensamiento espacial, métrico, variacional, aleatorio y numérico 4. Como consecuencia de la anterior adopción aparece el trabajo por resolución de problemas ya que de acuerdo con Dubinsky
Resumo:
El presente documento tiene como finalidad el mostrar el proceso enseñanza- aprendizaje dado en el colegio I. T. I. Francisco José de Caldas en una práctica docente, abordando tres campos de pensamiento matemático: numérico, métrico y geométrico a partir de una situación fundamental explicitada en algunos juegos. Esta metodología se usa con el fin de hacer que los estudiantes obtengan un aprendizaje significativo de las temáticas propuestas, por medio de un proceso lúdico y dinámico; su objetivo es reflexionar acerca de los propósitos que tiene el maestro frente al proceso que enfrentan los estudiantes, sin pensar solamente en abordar muchos conocimientos para lograr todo lo propuesto por el currículo, sino que, independientemente de esto, se buscó que todo lo que se dio a conocer quedara completamente claro.
Resumo:
Desde hace unos años, he detectado que los estudiantes presentan dificultades en las conversiones entre unidades de medida. La primera dificultad se presenta, en el hecho, de que ellos, cuando están frente a un problema de estos, un gran número no realizan los planteamientos pertinentes, pues el primer interrogante, es el tipo de operación que deben aplicar, sin hacer el análisis correspondiente; la segunda, es la memorización de una operación, puesto que en la mayoría de las situaciones aplican el método tradicional, multiplicar o dividir, de acuerdo al orden de la conversión y a la información que han recibido, y en ocasiones obtiene resultados erráticos, que el estudiante los percibe como correctos o coherentes; la tercera es la equivalencia entre las unidades de medida, más que todo entre los múltiplos y submúltiplos de las unidades básicas, aparentemente no parece un problema importante, pero en el momento de realizar la conversión, es donde se detecta la incidencia de este error; la cuarta, es la falta de comprensión de los resultados, es decir, para ellos en ocasiones es normal, que ciertas respuestas sean normales, sin tener en cuenta su coherencia, por ejemplo, determinar que 35cm sea igual a 35 metros, o 3500 metros, etc.; la quinta, es el olvido de las transformaciones entre unidades de medida de forma rápida, ya que, al cabo de cierto tiempo, cuando es tema es necesitado en una clase, el estudiante no lo recuerda con la solidez que el docente desea. Estos motivos nos impulsan a interrogarnos, ¿qué hacer, para tratar de superar estas dificultades en los estudiantes de secundaria y universitarios?
Resumo:
Pensar en una evaluación en competencias nos remite a pensar, en el sentido de la evaluación, del termino competencia, pero sobre todo a las practicas pedagógicas sobre componentes curriculares y su sentido en la formación de los niños y jóvenes de nuestro país. Una evaluación en competencias, es una evaluación que centra la atención en el saber hacer y en el hacer sabiendo, que debe permitir reconocer las diferencias y las potencialidades de nuestros jóvenes, de esta manera el reto pedagógico de todo maestro radica en el tipo de problema o de actividad que le propone al estudiante para activar sus competencias o favorecer su desarrollo. Los desempeños son expresiones de esas competencias y aunque no son exclusivos de una determinada área si están asociados a campos del saber específicos, dadas las particularidades de las disciplinas de conocimiento. Es en este sentido que nos proponemos discutir sobre algunas competencias y desempeños asociados al saber algebraico.
Resumo:
Hablar sobre la importancia del computador en la enseñanza de la matemática parece ser un tema trillado del cual se hacen todo tipo de especulaciones, desde quienes lo rechazan completamente, hasta quienes lo idealizan atribuyéndole casi un papel mágico llegando inclusive a confundir el “hacer matemáticas ”con utilizar el computador para acortar caminos, corroborar teorías , construir gráficos, realizar cálculos y otros aspectos que son útiles no sólo al “hacer ”sino, también, al “aprender” matemáticas.
Resumo:
En este artículo se pretende analizar los problemas que surgen en el desarrollo de los contenidos referentes a intervalos de confianza en los distintos bachilleratos en los que están incluidos, y atacar éstos mediante la utilización de herramientas informáticas, en particular con el Matemática 3.0, incluyendo un posible notebook a partir de unas funciones programadas especialmente para hacer más fácil e intuitiva a los alumnos la compresión de los conceptos a desarrollar.
Resumo:
Este documento presenta un juego o puzzle de intercambio de posiciones es aquel en el que, sobre un tablero, se encuentran posicionados dos grupos de fichas y se presenta como objetivo cambiar entre sí dichas posiciones. El cambio se ha de hacer con ciertas reglas que atañen al modo de moverse las fichas, con el fin de utilizar como recurso didáctico.
Resumo:
Este artículo muestra los resultados de una actividad escolar con estudiantes del Nivel Medio Superior. La actividad se llevó a cabo en el curso de Geometría y Trigonometría. El objetivo principal de esta investigación es hacer una reflexión acerca de las diferencias entre la definición de un concepto y la imagen conceptual que los estudiantes tienen acerca de ese objeto. Así como también analizar las posibles implicaciones que esa diferencia podría generar en el entendimiento de los estudiantes de los conceptos matemáticos.
Resumo:
La Socioepistemología a través de diversos resultados de investigación, señala la conveniencia de hacer estudios del uso del conocimiento matemático y su desarrollo para crear un marco que ofrezca las prácticas de referencia en donde se resignifique la matemática. Bajo esa premisa estudiamos los usos de la gráfica en el bachillerato, con el fin de construir un marco de referencia que dé evidencia de los funcionamientos y formas de las gráficas y en consecuencia una resignificación del conocimiento. Lo anterior abre una nueva brecha para tratar a la gráfica, puesto que no la miramos como la representación de algún concepto matemático. Por el contrario, la graficación es abordada como la argumentación que genera conocimiento. En ese sentido, afirmamos que tratamos con una segmentación del conocimiento, puesto que hay un cambio de enfoque que nos conduce a teorizar sobre el uso del conocimiento y como consecuencia se genera un subuniverso de significados.
Resumo:
Presentamos una propuesta didáctica para utilizar la calculadora graficadora de una manera inteligente en el aula de matemáticas. Se propone en forma de prácticas de laboratorio a fin de favorecer la idea de un espacio para hacer matemáticas.