34 resultados para Representación [Vorstellung]
Resumo:
En esta comunicación ponemos de manifiesto la importancia del estudio de los poliedros en la Enseñanza Secundaria y su utilidad para el desarrollo y la comunicación de ideas matemáticas. Con esta intención planteamos una serie de tareas que permiten al profesor y al alumno trabajar los poliedros potenciando el lenguaje en el aula de matemáticas y las capacidades espaciales del alumno. Las tareas aquí presentadas fueron realizadas en unas Jornadas de Investigación en el aula de matemáticas organizadas por la Sociedad de Profesores de Matemáticas THALES en Granada con la participación de profesores de distintos niveles educativos.
Resumo:
Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.
Resumo:
En la Educación Matemática es ampliamente reconocida la importancia de la investigación de los factores que influyen o generan procesos de aprendizaje, que ayuden a los estudiantes a construir de manera significativa los objetos matemáticos. En el marco de esta propuesta, se reconoce que la investigación actual de carácter cognitivo en educación matemática, evidencia que los problemas de comprensión que presentan los estudiantes tienen que ver tanto con el contenido enseñado, como con la complejidad de la construcción de los saberes, es decir, con los funcionamientos propios que constituyen la parte operativa del pensamiento.
Resumo:
Presentamos los primeros resultados de un estudio exploratorio sobre el desarrollo del conocimiento didáctico de futuros profesores de matemáticas con respecto a las nociones de estructura conceptual y sistemas de representación. Estos resultados se obtuvieron al codificar y analizar las grabaciones de clase y las producciones de estudiantes del último curso de Matemáticas en una asignatura de didáctica de las matemáticas. Se encontró que las producciones y las actuaciones de los alumnos pasan por diferentes estados que permiten identificar tanto algunas dificultades, como momentos en los que surgen reorganizaciones conceptuales.
Resumo:
En el presente trabajo se aborda el estudio de la variación de una función cualquiera cuando se tiene sólo su representación gráfica y no se conoce su representación algebraica, así como la relación de la función con su primera y su segunda derivada y la relación entre tales derivadas, esto es, la información que puede proporcionar cada derivada acerca de la función y la información que aporta cada derivada con respecto a la otra.
Resumo:
Frecuentemente, se hace énfasis en la enseñanza y aprendizaje de las matemáticas movilizar diversos registros de representación de una misma gestión. Sin embargo, el tratamiento de conversión de una representación en una representación de otro registro no es fácil y en ocasiones hasta imposible. Al respecto, Duval (1988) señala: “cuando se efectúa la conversión ecuación → gráfico no surge ninguna dificultad, pero todo cambia cuando se hace la conversión inversa”. Este aporte es muy sobresaliente e induce a investigar la naturaleza de esta problemática. En este sentido, nuestro trabajo de investigación está enfocado en identificar algunas dificultades que puedan presentar los estudiantes al tratar de poner en correspondencia el registro gráfico con el algebraico. Para ello, se aplicaron actividades donde se exponen algunos valores visuales de la gráfica, con el fin de establecer una correspondencia entre esos valores visuales de la recta y su respectiva escritura algebraica, así como, establecer un sistema para las diferentes categorías de tres rectas en el plano.
Resumo:
El estudio de la primera representación adquiere un papel determinante en la actividad de la resolución de problemas, ya que se presenta entre la percepción del problema y el proceso de resolución. El presente trabajo, plantea la posibilidad de desarrollar la formulación de problemas para enriquecer el contenido de la primera representación, permitiendo explorar nuevas representaciones para identificar la organización de sus relaciones y establecer su articulación en problemas contextualizados.
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.
Resumo:
En este texto se analiza, en primer lugar, la posible conexión entre las destrezas de representación externa de figuras planas y el desarrollo de los niveles de razonamiento. Para ello se realizó un amplio estudio entre estudiantes de enseñanza obligatoria, bachillerato y universidad, cuyos resultados sugieren una respuesta positiva a la primera cuestión. Posteriormente, se formula una propuesta de nuevos descriptores para los niveles de razonamiento, en relación a la representación externa de figuras planas, que pueden contribuir a una mejor clarificación de aquellos y a una mayor integración curricular del modelo de Van Hiele.
Resumo:
El pasaje de la unidad al cero, parece ser un paso intelectual sencillo, sólo si no nos detenemos a pensar acerca de las dificultades que involucran su comprensión. Existe una gran complejidad en este paso, tanto desde el punto de vista histórico como conceptual. La percepción de la relación entre el vacío, la nada y la necesidad de representarla no fue históricamente inmediata ni sencilla. La invención del cero estuvo muy lejos de ser evidente. Se propone una breve recorrida por la historia del surgimiento del cero y sus funciones, para lograr hacer más comprensibles las dificultades que presenta la comprensión de este concepto.
Resumo:
Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.
Resumo:
El pasaje de la unidad al cero, parece ser un paso intelectual sencillo, sólo si no, nos detenemos a pensar acerca de las dificultades que involucran su comprensión. Existe una gran complejidad en este paso, tanto desde el punto de vista histórico como conceptual. La percepción de la relación entre el vacío, la nada y la necesidad de representarla no fue históricamente inmediata ni sencilla. La invención del cero estuvo muy lejos de ser evidente. Se propone una breve recorrida por la historia del surgimiento del cero y sus funciones, para lograr hacer más comprensibles las dificultades que presenta la comprensión de este concepto.
Resumo:
En el trabajo se propone un modelo didáctico de la representación del problema matemático y su formación en el proceso de resolución, que presenta como novedad científica, la concepción y fundamentación del representar como una habilidad, con una estructuración donde se integran las operaciones externas e internas, como dos fases cuyo resultado tributa a la excelencia de la representación. También se devela la representación como una dimensión dinamizadora del proceso de resolución de problemas matemáticos.
Resumo:
En este documento presentamos un procedimiento para caracterizar las estrategias empleadas en la resolución de problemas relacionados con sucesiones de números naturales lineales y cuadráticas que involucran el razonamiento inductivo. Este procedimiento se fundamenta en la naturaleza del razonamiento inductivo y en el análisis de contenido de las sucesiones, teniendo en cuenta la estructura conceptual, los sistemas de representación y los aspectos cognitivos asociados al contenido matemático.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de tercero y cuarto de Secundaria en la resolución del "problema de las baldosas". Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.