26 resultados para quantum effect semiconductor devices
em Biblioteca Digital da Produ
Resumo:
The admittance spectra and current-voltage (I-V) characteristics are reported of metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) capacitors employing cross-linked poly(amide-imide) (c-PAI) as the insulator and poly(3-hexylthiophene) (P3HT) as the active semiconductor. The capacitance of the MIM devices are constant in the frequency range from 10 Hz to 100 kHz, with tan delta values as low as 7 x 10(-3) over most of the range. Except at the lowest voltages, the I-V characteristics are well-described by the Schottky equation for thermal emission of electrons from the electrodes into the insulator. The admittance spectra of the MIS devices displayed a classic Maxwell-Wagner frequency response from which the transverse bulk hole mobility was estimated to be similar to 2 x 10(-5) cm(2) V(-1)s(-1) or similar to 5 x 10(-8) cm(2) V(-1)s(-1) depending on whether or not the surface of the insulator had been treated with hexamethyldisilazane (HMDS) prior to deposition of the P3HT. From the maximum loss observed in admittance-voltage plots, the interface trap density was estimated to be similar to 5 x 10(10) cm(-2) eV(-1) or similar to 9 x 10(10) cm(-2) eV(-1) again depending whether or not the insulator was treated with HMDS. We conclude, therefore, that HMDS plays a useful role in promoting order in the P3HT film as well as reducing the density of interface trap states. Although interposing the P3HT layer between the insulator and the gold electrode degrades the insulating properties of the c-PAI, nevertheless, they remain sufficiently good for use in organic electronic devices. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The study of ionizing radiation effects on semiconductor devices is of great relevance for the global technological development and is a necessity in some strategic areas in Brazil. This work presents preliminary results of radiation effects in MOSFETs that were exposed to 3.2 Grad radiation dose produced by a 2.6-MeV proton beam. The focus of this work was to electrically characterize a Rectangular-Gate MOSFET (RGT) and a Circular-Gate MOSFET (CGT), manufactured with the On Semiconductor 0.5 mu m standard CMOS fabrication process and to verify a suitable geometry for space applications. During the experiment, I-DS x V-GS curves were measured. After irradiation, the RGT off-state current (I-OFF) increased approximately two orders of magnitude reaching practically the same value of the I-OFF in the CGT, which only doubled its value. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
We study the spin Hall conductance fluctuations in ballistic mesoscopic systems. We obtain universal expressions for the spin and charge current fluctuations, cast in terms of current-current autocorrelation functions. We show that the latter are conveniently parametrized as deformed Lorentzian shape lines, functions of an external applied magnetic field and the Fermi energy. We find that the charge current fluctuations show quite unique statistical features at the symplectic-unitary crossover regime. Our findings are based on an evaluation of the generalized transmission coefficients correlation functions within the stub model and are amenable to experimental test. DOI: 10.1103/PhysRevB.86.235112
Resumo:
Semiconductor nanowhiskers (NWs) made of III-V compounds exhibit great potential for technological applications. Controlling the growth conditions, such as temperature and diameter, it is possible to alternate between zinc-blende (ZB) and wurtzite (WZ) crystalline phases, giving origin to the so called polytypism. This effect has great influence in the electronic and optical properties of the system, generating new forms of confinement to the carriers. A theoretical model capable to accurately describe electronic and optical properties in these polytypical nanostructures can be used to study and develop new kinds of nanodevices. In this study, we present the development of a wurtzite/zinc-blende polytypical model to calculate the electronic band structure of nanowhiskers based on group theory concepts and the k.p method. Although the interest is in polytypical superlattices, the proposed model was applied to a single quantum well of InP to study the physics of the wurtzite/zinc-blende polytypism. By the analysis of our results, some trends can be predicted: spatial carriers' separation, predominance of perpendicular polarization (xy plane) in the luminescence spectra, and interband transition blueshifts with strain. Also, a possible range of values for the wurtzite InP spontaneous polarization is suggested. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767511]
Resumo:
In this work, we present a theoretical photoluminescence (PL) for p-doped GaAs/InGaAsN nanostructures arrays. We apply a self-consistent method in the framework of the effective mass theory. Solving a full 8 x 8 Kane's Hamiltonian, generalized to treat different materials in conjunction with the Poisson equation, we calculate the optical properties of these systems. The trends in the calculated PL spectra, due to many-body effects within the quasi-two-dimensional hole gas, are analyzed as a function of the acceptor doping concentration and the well width. Effects of temperature in the PL spectra are also investigated. This is the first attempt to show theoretical luminescence spectra for GaAs/InGaAsN nanostructures and can be used as a guide for the design of nanostructured devices such as optoelectronic devices, solar cells, and others.
Resumo:
The transport properties of the two-dimensional system in HgTe-based quantum wells containing simultaneously electrons and holes of low densities are examined. The Hall resistance, as a function of perpendicular magnetic field, reveals an unconventional behavior, different from the classical N-shaped dependence typical for bipolar systems with electron-hole asymmetry. The quantum features of magnetotransport are explained by means of numerical calculation of the Landau level spectrum based on the Kane Hamiltonian. The origin of the quantum Hall plateau sigma(xy) = 0 near the charge neutrality point is attributed to special features of Landau quantization in our system.
Resumo:
A metal-insulator transition in a two-dimensional semimetal based on HgTe quantum wells is discovered. The transition is induced by a magnetic field applied parallel to the plane of the quantum well. The threshold behavior of the activation energy as a function of the magnetic-field strength and an abrupt reduction of the Hall resistance at the onset of the transition suggest that the observed effect originates from the formation of an excitonic insulator.
Resumo:
One-transistor floating-body random access memory retention time distribution is investigated on silicon-on-insulator UTBOX devices. It is shown that the average retention time can be improved by two to three orders of magnitude by reducing the body-junction electric field. However, the retention time distribution, which is mainly caused by the generation-recombination center density variation, remains similar.
Resumo:
This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Resumo:
The interaction of formamide and the two transition states of its amide group rotation with one, two, or three water molecules was studied in vacuum. Great differences between the electronic structure of formamide in its most stable form and the electronic structure of the transition states were noticed. Intermolecular interactions were intense, especially in the cases where the solvent interacted with the amide and the carbonyl groups simultaneously. In the transition states, the interaction between the lone pair of nitrogen and the water molecule becomes important. With the aid of the natural bond orbitals, natural resonance theory, and electron localization function (ELF) analyses an increase in the resonance of planar formamide with the addition of successive water molecules was observed. Such observation suggests that the hydrogen bonds in the formamidewater complexes may have some covalent character. These results are also supported by the quantitative ELF analyses. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
This work examines the effect of copper nanoparticles (Cu NPs) on the photocurrent efficiency of silicon photovoltaic (Si PV) devices. An optimized synthesis of stable Cu NPs is reported together with a procedure for their immobilization on the Si PV surface. A comprehensive analysis of the photocurrent and power dependence of the Cu NPs surface coverage and size is presented. A decrease in photoconversion was observed for wavelengths shorter than similar to 500 nm, due to the Cu interband absorption. In the low surface coverage limit, where the level of aggregation was found to be low, the surface plasmon resonance absorption dominates leading to a modest effect on the photocurrent response. As the number of aggregates increased with the surface coverage, the photocurrent efficiency also increased, and a maximum enhancement power conversion of 16% was found for a 54 +/- 6 NPs per mu m(2) PV cell. This enhancement was attributed to SPR light scattering and trapping into the Si PV device. Higher surface coverage yielded numerous aggregates which acted as a bulk coating and caused a decrease in both photocurrent and power measurements.
Resumo:
Polarized photoluminescence from weakly coupled random multiple well quasi-three-dimensional electron system is studied in the regime of the integer quantum Hall effect. Two quantum Hall ferromagnetic ground states assigned to the uncorrelated miniband quantum Hall state and to the spontaneous interwell phase coherent dimer quantum Hall state are observed. Photoluminescence associated with these states exhibits features caused by finite-size skyrmions: dramatic reduction of the electron spin polarization when the magnetic field is increased past the filling factor nu = 1. The effective skyrmion size is larger than in two-dimensional electron systems.
Resumo:
The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn-anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx-water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute-solvent electrostatic interaction. Our best estimate for the shift of the pi-pi* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 +/- 90 cm(-1), which is only 110 cm(-1) (0.014 eV) below the experimental extrapolation of -2,410 +/- 90 cm(-1). This red-shift of around -2,500 cm(-1) can be divided in two distinct and opposite contributions. One contribution is related to the syn -> anti conformational change leading to a blue-shift of similar to 1,700 cm(-1). Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm(-1). Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.
Resumo:
This work studies the gate-induced drain leakage (GIDL) in p- and n-MuGFET structures with different TiN metal gate thickness and high-k gate dielectrics. As a result of this analysis, it was observed that a thinner TiN metal gate showed a larger GIDL due to the different gate oxide thickness and a reduced metal gate work function. In addition, replacing SiON by a high-k dielectric (HfSiON) results for nMuGFETs in a decrease of the GIDL On the other hand, the impact of the gate dielectric on the GIDL for p-channel MuGFETs is marginal. The effect of the channel width was also studied, whereby narrow fin devices exhibit a reduced GIDL current in spite of the larger vertical electric field expected for these devices. Finally, comparing the effect of the channel type, an enhanced GIDL current for pMuGFET devices was observed. (C) 2011 Elsevier Ltd. All rights reserved.