9 resultados para transistor, jfet, mset

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-transistor floating-body random access memory retention time distribution is investigated on silicon-on-insulator UTBOX devices. It is shown that the average retention time can be improved by two to three orders of magnitude by reducing the body-junction electric field. However, the retention time distribution, which is mainly caused by the generation-recombination center density variation, remains similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of one-dimensional (1D) V2O5 center dot nH(2)O nanostructures as pH sensing material was evaluated. 1D V2O5 center dot nH(2)O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5 center dot nH(2)O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5 center dot nH(2)O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5 center dot nH(2)O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated optical and transport properties of the molecular structure 2,3,4,5-tetraphenyl-1-phenylethynyl-cyclopenta-2,4-dienol experimentally and theoretically. The optical spectrum was calculated using Hartree-Fock-intermediate neglect of differential overlap-configuration interaction model. The experimental photoluminescence spectrum showed a peak around 470nm which was very well described by the modeling. Electronic transport measurements showed a diode-like effect with a strong current rectification. A phenomenological microscopic model based on non-equilibrium Green's function technique was proposed and a very good description electronic transport was obtained. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767457]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 key X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadium/titanium mixed oxide films were produced using the sol-gel route. The structural investigation revealed that increased TiO2 molar ratio in the mixed oxide disturbs the V2O5 crystalline structure and makes it amorphous. This blocks the TiO2 phase transformation, so TiO2 stabilizes in the anatase phase. In addition the surface of the sample always presents larger amounts of TiO2 than expected, revealing a concentration gradient along the growth direction. For increased TiO2 molar ratios the roughness of the surface is reduced. Ion sensors were fabricated using the extended gate field effect transistor configuration. The obtained sensitivities varied in the range of 58 mV/pH down to 15 mV/pH according to the composition and morphology of the surface of the samples. Low TiO2 amounts presented better sensing properties that might be related to the cracked and inhomogeneous surfaces. Rising the TiO2 quantity in the films produces homogeneous surfaces but diminishes their sensitivities. Thus, the present paper reveals that the compositional and structural aspects change the surface morphology and electrical properties accounting for the final ion sensing properties of the V2O5/TiO2 films. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.053206jes] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The layer-by-layer (LbL) technique combined with field-effect transistor (FET) based sensors has enabled the production of pH-sensitive platforms with potential application in biosensors. A variation of the FET architecture, so called separative extended gate FET (SEGFET) devices, are promise as an alternative to conventional ion sensitive FET (ISFET). SEGFET configuration exhibits the advantage of combining the field-effect concept with organic and inorganic materials directly adsorbed on the extended gate, allowing the test of new pH-sensitive materials in a simple and low cost way. In this communication, poly(propylene imine) dendrimer (PPI) and TiO2 nanoparticles (TiO2-np) were assembled onto gold-covered substrates via layer-by-layer technique to produce a low cost SEGFET pH sensor. The sensor presented good pH sensitivity, ca. 57 mV pH(-1), showing that our strategy has potential advantages to fabricate low cost pH-sensing membranes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The floating-body-RAM sense margin and retention-time dependence on the gate length is investigated in UTBOX devices using BJT programming combined with a positive back bias (so-called V th feedback). It is shown that the sense margin and the retention time can be kept constant versus the gate length by using a positive back bias. Nevertheless, below a critical L, there is no room for optimization, and the memory performances suddenly drop. The mechanism behind this degradation is attributed to GIDL current amplification by the lateral bipolar transistor with a narrow base. The gate length can be further scaled using underlap junctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the combination of the Dynamic Threshold (DT) voltage technique with a non-planar structure is experimentally studied in triple-gate FinFETs. The drain current, transconductance, resistance, threshold voltage, subthreshold swing and Drain Induced Barrier Lowering (DIBL) will be analyzed in the DT mode and the standard biasing configuration. Moreover, for the first time, the important figures of merit for the analog performance such as transconductance-over-drain current, output conductance. Early voltage and intrinsic voltage gain will be studied experimentally and through three-dimensional (3-D) numerical simulations for different channel doping concentrations in triple-gate DTMOS FinFETs. The results indicate that the DTMOS FinFETs always yield superior characteristic; and larger transistor efficiency. In addition, DTMOS devices with a high channel doping concentration exhibit much better analog performance compared to the normal operation mode, which is desirable for high performance low-power/low-voltage applications. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model for computing the generation-recombination noise due to traps within the semiconductor film of fully depleted silicon-on-insulator MOSFET transistors is presented. Dependence of the corner frequency of the Lorentzian spectra on the gate voltage is addressed in this paper, which is different to the constant behavior expected for bulk transistors. The shift in the corner frequency makes the characterization process easier. It helps to identify the energy position, capture cross sections, and densities of the traps. This characterization task is carried out considering noise measurements of two different candidate structures for single-transistor dynamic random access memory devices.