9 resultados para sliding vector fields
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work deals with global solvability of a class of complex vector fields of the form L = partial derivative/partial derivative t + (a(x, t)+ ib(x, t))partial derivative/partial derivative x, where a and b are real-valued C-infinity functions, defined on the cylinder Omega = R x S-1. Relatively compact (Sussmann) orbits are allowed. The connection with Malgrange's notion of L-convexity for supports is investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
This work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp.
Resumo:
We consider a class of involutive systems of n smooth vector fields on the n + 1 dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.
Resumo:
Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
Resumo:
We present a "boundary version" for theorems about minimality of volume and energy functionals on a spherical domain of an odd-dimensional Euclidean sphere.
Resumo:
This work is concerned with dynamical systems in presence of symmetries and reversing symmetries. We describe a construction process of subspaces that are invariant by linear Gamma-reversible-equivariant mappings, where Gamma is the compact Lie group of all the symmetries and reversing symmetries of such systems. These subspaces are the sigma-isotypic components, first introduced by Lamb and Roberts in (1999) [10] and that correspond to the isotypic components for purely equivariant systems. In addition, by representation theory methods derived from the topological structure of the group Gamma, two algebraic formulae are established for the computation of the sigma-index of a closed subgroup of Gamma. The results obtained here are to be applied to general reversible-equivariant systems, but are of particular interest for the more subtle of the two possible cases, namely the non-self-dual case. Some examples are presented. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Let phi: a"e(2) -> a"e(2) be an orientation-preserving C (1) involution such that phi(0) = 0. Let Spc(phi) = {Eigenvalues of D phi(p) | p a a"e(2)}. We prove that if Spc(phi) aS, a"e or Spc(phi) a (c) [1, 1 + epsilon) = a... for some epsilon > 0, then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h = (I + D phi(0)phi)/2,where I: a"e(2) -> a"e(2) is the identity map. Similarly, we prove that if phi is an orientation-reversing C (1) involution such that phi(0) = 0 and Trace (D phi(0)D phi(p) > - 1 for all p a a"e(2), then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h. Finally, we show that h may fail to be a global linearization of phi if the above conditions are not fulfilled.
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
Several extensions of the standard model predict the existence of new neutral spin-1 resonances associated with the electroweak symmetry breaking sector. Using the data from ATLAS (with integrated luminosity of L = 1.02 fb(-1)) and CMS (with integrated luminosity of L = 1.55 fb(-1)) on the production of W+W- pairs through the process pp --> l(+)l(-)' is not an element of(T), we place model independent bounds on these new vector resonances masses, couplings, and widths. Our analyses show that the present data exclude new neutral vector resonances with masses up to 1-2.3 TeV depending on their couplings and widths. We also demonstrate how to extend our analysis framework to different models with a specific example.