27 resultados para Theorem of Thales

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a previous paper, we connected the phenomenological noncommutative inflation of Alexander, Brandenberger and Magueijo [ Phys. Rev. D 67 081301 (2003)] and Koh and Brandenberger [ J. Cosmol. Astropart Phys. 2007 21 ()] with the formal representation theory of groups and algebras and analyzed minimal conditions that the deformed dispersion relation should satisfy in order to lead to a successful inflation. In that paper, we showed that elementary tools of algebra allow a group-like procedure in which even Hopf algebras (roughly the symmetries of noncommutative spaces) could lead to the equation of state of inflationary radiation. Nevertheless, in this paper, we show that there exists a conceptual problem with the kind of representation that leads to the fundamental equations of the model. The problem comes from an incompatibility between one of the minimal conditions for successful inflation (the momentum of individual photons being bounded from above) and the Fock-space structure of the representation which leads to the fundamental inflationary equations of state. We show that the Fock structure, although mathematically allowed, would lead to problems with the overall consistency of physics, like leading to a problematic scattering theory, for example. We suggest replacing the Fock space by one of two possible structures that we propose. One of them relates to the general theory of Hopf algebras (here explained at an elementary level) while the other is based on a representation theorem of von Neumann algebras (a generalization of the Clebsch-Gordan coefficients), a proposal already suggested by us to take into account interactions in the inflationary equation of state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let G = Z(pk) be a cyclic group of prime power order and let V and W be orthogonal representations of G with V-G = W-G = W-G = {0}. Let S(V) be the sphere of V and suppose f: S(V) -> W is a G-equivariant mapping. We give an estimate for the dimension of the set f(-1){0} in terms of V and W. This extends the Bourgin-Yang version of the Borsuk-Ulam theorem to this class of groups. Using this estimate, we also estimate the size of the G-coincidences set of a continuous map from S(V) into a real vector space W'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A subspace representation of a poset S = {s(1), ..., S-t} is given by a system (V; V-1, ..., V-t) consisting of a vector space V and its sub-spaces V-i such that V-i subset of V-j if s(i) (sic) S-j. For each real-valued vector chi = (chi(1), ..., chi(t)) with positive components, we define a unitary chi-representation of S as a system (U: U-1, ..., U-t) that consists of a unitary space U and its subspaces U-i such that U-i subset of U-j if S-i (sic) S-j and satisfies chi 1 P-1 + ... + chi P-t(t) = 1, in which P-i is the orthogonal projection onto U-i. We prove that S has a finite number of unitarily nonequivalent indecomposable chi-representations for each weight chi if and only if S has a finite number of nonequivalent indecomposable subspace representations; that is, if and only if S contains any of Kleiner's critical posets. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove a new Morse-Sard-type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for C-2 mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the p-regularity and its bridge toward the rho-regularity which implies topological triviality at infinity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a scaled structure (model or replica) is used to predict the response of a full-size compound (prototype), the model geometric dimensions should relate to the corresponding prototype dimensions by a single scaling factor. However, owing to manufacturing technical restrictions, this condition cannot be accomplished for some of the dimensions in real structures. Accordingly, the distorted geometry will not comply with the overall geometric scaling factor, infringing the Pi theorem requirements for complete dynamic similarity. In the present study, a method which takes geometrical distortions into account is introduced, leading to a model similar to the prototype. As a means to infer the performance of this method, three analytical problems of structures subjected to dynamic loads are analysed. It is shown that the replica developed applying this technique is able to accurately predict the full-size structure behaviour even when the studied models have some of their dimensions severely distorted. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we compare the management and survival outcomes of chronic myeloid leukemia (CML) patients who had early or late imatinib mesylate (IM) therapy. The cytogenetic and molecular responses of 189 CML patients were analyzed. Of this group, 121 patients were classified as the early chronic phase (ECP) group and started IM within 12 months of diagnosis. The other 68 patients were classified as the late chronic phase (LCP) group who had been treated with interferon (IFN)-alpha-2 and crossed over to IM more than 12 months after diagnosis. The overall rates of complete cytogenetic response (CCyR) and major molecular response (MMR) at last follow-up were 83.6 and 78.1% in the ECP and LCP groups, respectively. The CCyR rates were 89.3 (for ECP patients) versus 73.5% (for LCP patients; p < 0.0001). At last follow-up, 82.4% ECP and 64.2% LCP patients had achieved an MMR (p < 0.0001). No significant differences were noted between the two groups with regard to survival outcomes. Our experience reveals that IM is an effective rescue therapy in most CML LCP patients who are intolerant or in whom IFN-alpha therapy fails. Such therapeutic options should be considered in LCP patients, particularly in countries where IM may not be available. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products of compact manifolds. Using (equivariant) bifurcation theory we determine the existence of infinitely many metrics that are accumulation points of pairwise non-homothetic solutions of the Yamabe problem. Using local rigidity and some compactness results for solutions of the Yamabe problem, we also exhibit new examples of conformal classes (with positive Yamabe constant) for which uniqueness holds. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generalizations of Lie algebras appeared in the modern mathematics and mathematical physics. In this paper we consider recent developments and remaining open problems on the subject. Some of that developments have been influenced by lectures given by Professor Jaime Keller in his research seminar. The survey includes Lie superalgebras, color Lie algebras, Lie algebras in symmetric categories, free Lie tau-algebras, and some generalizations with non-associative enveloping algebras: tangent algebras to analytic loops, bialgebras and primitive elements, non-associative Hopf algebras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inthispaperwestudygermsofpolynomialsformedbytheproductofsemi-weighted homogeneous polynomials of the same type, which we call semi-weighted homogeneous arrangements. It is shown how the L numbers of such polynomials are computed using only their weights and degree of homogeneity. A key point of the main theorem is to find the number called polar ratio of this polynomial class. An important consequence is the description of the Euler characteristic of the Milnor fibre of such arrangements only depending on their weights and degree of homogeneity. The constancy of the L numbers in families formed by such arrangements is shown, with the deformed terms having weighted degree greater than the weighted degree of the initial germ. Moreover, using the results of Massey applied to families of function germs, we obtain the constancy of the homology of the Milnor fibre in this family of semi-weighted homogeneous arrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let G be a compact Lie group. Let X, Y be free G-spaces. In this paper, by using the numerical index i (X; R), under cohomological conditions on the spaces X and Y, we consider the question of the existence of G-equivariant maps f: X -> Y.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dimensional analysis of the classical equations related to the dynamics of vector-borne infections is presented. It is provided a formal notation to complete the expressions for the Ross' threshold theorem, the Macdonald's basic reproduction "rate" and sporozoite "rate", Garret-Jones' vectorial capacity and Dietz-Molineaux-Thomas' force of infection. The analysis was intended to provide a formal notation that complete the classical equations proposed by these authors.