On bifurcation of solutions of the Yamabe problem in product manifolds


Autoria(s): de Lima, L. L.; Piccione, P.; Zedda, M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

24/09/2013

24/09/2013

2012

Resumo

We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products of compact manifolds. Using (equivariant) bifurcation theory we determine the existence of infinitely many metrics that are accumulation points of pairwise non-homothetic solutions of the Yamabe problem. Using local rigidity and some compactness results for solutions of the Yamabe problem, we also exhibit new examples of conformal classes (with positive Yamabe constant) for which uniqueness holds. (C) 2011 Elsevier Masson SAS. All rights reserved.

CNPq

CNPq

Funcap, Brazil

Funcap, Brazil

Fapesp, Brazil

FAPESP (Brazil)

RAS [L.R. 7/2007]

RAS

Identificador

ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, PARIS, v. 29, n. 2, pp. 261-277, MAR-APR, 2012

0294-1449

http://www.producao.usp.br/handle/BDPI/33628

10.1016/j.anihpc.2011.10.005

http://dx.doi.org/10.1016/j.anihpc.2011.10.005

Idioma(s)

eng

Publicador

GAUTHIER-VILLARS/EDITIONS ELSEVIER

PARIS

Relação

ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE

Direitos

restrictedAccess

Copyright GAUTHIER-VILLARS/EDITIONS ELSEVIER

Palavras-Chave #CONSTANT SCALAR CURVATURE #METRICS #SPACE #COMPACTNESS #THEOREM #MATHEMATICS, APPLIED
Tipo

article

original article

publishedVersion