On bifurcation of solutions of the Yamabe problem in product manifolds
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
24/09/2013
24/09/2013
2012
|
Resumo |
We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products of compact manifolds. Using (equivariant) bifurcation theory we determine the existence of infinitely many metrics that are accumulation points of pairwise non-homothetic solutions of the Yamabe problem. Using local rigidity and some compactness results for solutions of the Yamabe problem, we also exhibit new examples of conformal classes (with positive Yamabe constant) for which uniqueness holds. (C) 2011 Elsevier Masson SAS. All rights reserved. CNPq CNPq Funcap, Brazil Funcap, Brazil Fapesp, Brazil FAPESP (Brazil) RAS [L.R. 7/2007] RAS |
Identificador |
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, PARIS, v. 29, n. 2, pp. 261-277, MAR-APR, 2012 0294-1449 http://www.producao.usp.br/handle/BDPI/33628 10.1016/j.anihpc.2011.10.005 |
Idioma(s) |
eng |
Publicador |
GAUTHIER-VILLARS/EDITIONS ELSEVIER PARIS |
Relação |
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE |
Direitos |
restrictedAccess Copyright GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Palavras-Chave | #CONSTANT SCALAR CURVATURE #METRICS #SPACE #COMPACTNESS #THEOREM #MATHEMATICS, APPLIED |
Tipo |
article original article publishedVersion |