Bourgin-Yang version of the Borsuk-Ulam theorem for Z(pk)-equivariant maps


Autoria(s): Marzantowicz, Waclaw; Mattos, Denise de; Santos, Edivaldo L. dos
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

12/10/2013

12/10/2013

2012

Resumo

Let G = Z(pk) be a cyclic group of prime power order and let V and W be orthogonal representations of G with V-G = W-G = W-G = {0}. Let S(V) be the sphere of V and suppose f: S(V) -> W is a G-equivariant mapping. We give an estimate for the dimension of the set f(-1){0} in terms of V and W. This extends the Bourgin-Yang version of the Borsuk-Ulam theorem to this class of groups. Using this estimate, we also estimate the size of the G-coincidences set of a continuous map from S(V) into a real vector space W'.

Polish Research Grant [NCN 2011/03/B/ST1/04533]

Polish Research Grant

FAPESP of Brazil [2010/51910-9, 2011/18758-1, 2011/18761-2]

FAPESP of Brazil

Identificador

ALGEBRAIC AND GEOMETRIC TOPOLOGY, COVENTRY, v. 12, n. 4, supl. 5, Part 3, pp. 2245-2258, DEC 1, 2012

1472-2739

http://www.producao.usp.br/handle/BDPI/34221

10.2140/agt.2012.12.2245

http://dx.doi.org/10.2140/agt.2012.12.2245

Idioma(s)

eng

Publicador

GEOMETRY & TOPOLOGY PUBLICATIONS

CONVENTRY

Relação

ALGEBRAIC AND GEOMETRIC TOPOLOGY

Direitos

closedAccess

Copyright GEOMETRY & TOPOLOGY PUBLICATIONS

Palavras-Chave #SPHERES #TOPOLOGIA ALGÉBRICA #MATHEMATICS
Tipo

article

original article

publishedVersion