26 resultados para Linear Codes over Finite Fields

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There has been a significant increase in the number of facial fractures stemming from sport activities in recent years, with the nasal bone one of the most affected structures. Researchers recommend the use of a nose protector, but there is no standardization regarding the material employed. Clinical experience has demonstrated that a combination of a flexible and rigid layer of ethylene vinyl acetate (EVA) offers both comfort and safety to practitioners of sports. The aim of the present study was the investigation into the stresses generated by the impact of a rigid body on the nasal bone on models with and without an EVA protector. For such, finite element analysis was employed. A craniofacial model was constructed from images obtained through computed tomography. The nose protector was modeled with two layers of EVA (1 mm of rigid EVA over 2 mm of flexible EVA), following the geometry of the soft tissue. Finite element analysis was performed using the LS Dyna program. The bone and rigid EVA were represented as elastic linear material, whereas the soft tissues and flexible EVA were represented as hyperelastic material. The impact from a rigid sphere on the frontal region of the face was simulated with a constant velocity of 20 m s-1 for 9.1 mu s. The model without the protector served as the control. The distribution of maximal stress of the facial bones was recorded. The maximal stress on the nasal bone surpassed the breaking limit of 0.130.34 MPa on the model without a protector, while remaining below this limit on the model with the protector. Thus, the nose protector made from both flexible and rigid EVA proved effective at protecting the nasal bones under high-impact conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, different methods to estimate the value of thin film residual stresses using instrumented indentation data were analyzed. This study considered procedures proposed in the literature, as well as a modification on one of these methods and a new approach based on the effect of residual stress on the value of hardness calculated via the Oliver and Pharr method. The analysis of these methods was centered on an axisymmetric two-dimensional finite element model, which was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. Simulations were conducted varying the level of film residual stress, film strain hardening exponent, film yield strength, and film Poisson's ratio. Different ratios of maximum penetration depth h(max) over film thickness t were also considered, including h/t = 0.04, for which the contribution of the substrate in the mechanical response of the system is not significant. Residual stresses were then calculated following the procedures mentioned above and compared with the values used as input in the numerical simulations. In general, results indicate the difference that each method provides with respect to the input values depends on the conditions studied. The method by Suresh and Giannakopoulos consistently overestimated the values when stresses were compressive. The method provided by Wang et al. has shown less dependence on h/t than the others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares the responses of conventional and transgenic soybean to glyphosate application in terms of the contents of 17 detectable soluble amino acids in leaves, analyzed by HPLC and fluorescence detection. Glutamate, histidine, asparagine, arginine + alanine, glycine + threonine and isoleucine increased in conventional soybean leaves when compared to transgenic soybean leaves, whereas for other amino acids, no significant differences were recorded. Univariate analysis allowed us to make an approximate differentiation between conventional and transgenic lines, observing the changes of some variables by glyphosate application. In addition, by means of the multivariate analysis, using principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA) it was possible to identify and discriminate different groups based on the soybean genetic origin. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper has two goals. First to present a natural example of a new class of random fields which are the variable neighborhood random fields. The example we consider is a partially observed nearest neighbor binary Markov random field. The second goal is to establish sufficient conditions ensuring that the variable neighborhoods are almost surely finite. We discuss the relationship between the almost sure finiteness of the interaction neighborhoods and the presence/absence of phase transition of the underlying Markov random field. In the case where the underlying random field has no phase transition we show that the finiteness of neighborhoods depends on a specific relation between the noise level and the minimum values of the one-point specification of the Markov random field. The case in which there is phase transition is addressed in the frame of the ferromagnetic Ising model. We prove that the existence of infinite interaction neighborhoods depends on the phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balan double dagger o Atmosf,rico Regional de Carbono na Amazonia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm(-3); the highest values were in the southern part of the Basin at altitudes of 1-3 km. The Delta CN/Delta CO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm(-3)) prevailed basinwide, and CO mixing ratios were enhanced by only similar to 10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. (C) 2011 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that the correct mathematical implementation of symmetry in the geometric formulation of classical field theory leads naturally beyond the concept of Lie groups and their actions on manifolds, out into the realm of Lie group bundles and, more generally, of Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries, which lie at the heart of gauge theories, but is already true even for global symmetries when one allows for fields that are sections of bundles with (possibly) non-trivial topology or, even when these are topologically trivial, in the absence of a preferred trivialization. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical simulation of flows of highly elastic fluids has been the subject of intense research over the past decades with important industrial applications. Therefore, many efforts have been made to improve the convergence capabilities of the numerical methods employed to simulate viscoelastic fluid flows. An important contribution for the solution of the High-Weissenberg Number Problem has been presented by Fattal and Kupferman [J. Non-Newton. Fluid. Mech. 123 (2004) 281-285] who developed the matrix-logarithm of the conformation tensor technique, henceforth called log-conformation tensor. Its advantage is a better approximation of the large growth of the stress tensor that occur in some regions of the flow and it is doubly beneficial in that it ensures physically correct stress fields, allowing converged computations at high Weissenberg number flows. In this work we investigate the application of the log-conformation tensor to three-dimensional unsteady free surface flows. The log-conformation tensor formulation was applied to solve the Upper-Convected Maxwell (UCM) constitutive equation while the momentum equation was solved using a finite difference Marker-and-Cell type method. The resulting developed code is validated by comparing the log-conformation results with the analytic solution for fully developed pipe flows. To illustrate the stability of the log-conformation tensor approach in solving three-dimensional free surface flows, results from the simulation of the extrudate swell and jet buckling phenomena of UCM fluids at high Weissenberg numbers are presented. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effects of spin accumulation (inside reservoirs) on electronic transport with tunneling and reflections at the gates of a quantum dot. Within the stub model, the calculations focus on the current-current correlation function for the flux of electrons injected into the quantum dot. The linear response theory used allows us to obtain the noise power in the regime of thermal crossover as a function of parameters that reveal the spin polarization at the reservoirs. The calculation is performed employing diagrammatic integration within the universal groups (ensembles of Dyson) for a nonideal, nonequilibrium chaotic quantum dot. We show that changes in the spin distribution determine significant alterations in noise behavior at values of the tunneling rates close to zero, in the regime of strong reflection at the gates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.