The concept of quasi-integrability for modified non-linear Schrodinger models
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
07/11/2013
07/11/2013
2012
|
Resumo |
We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model. Royal Society Royal Society CNPq (Brazil) CNPq (Brazil) |
Identificador |
JOURNAL OF HIGH ENERGY PHYSICS, NEW YORK, v. 157, n. 9, supl. 1, Part 6, pp. 52-58, SEP, 2012 1126-6708 http://www.producao.usp.br/handle/BDPI/42927 10.1007/JHEP09(2012)103 |
Idioma(s) |
eng |
Publicador |
SPRINGER NEW YORK |
Relação |
JOURNAL OF HIGH ENERGY PHYSICS |
Direitos |
closedAccess Copyright SPRINGER |
Palavras-Chave | #INTEGRABLE FIELD THEORIES #INTEGRABLE HIERARCHIES #INTEGRABLE EQUATIONS IN PHYSICS #SOLITONS MONOPOLES AND INSTANTONS #ZERO-CURVATURE CONDITIONS #PHYSICS, PARTICLES & FIELDS |
Tipo |
article original article publishedVersion |