Prediction with measurement errors in finite populations


Autoria(s): Singer, Julio M.; Stanek, Edward J., III; Lencina, Viviana B.; Mery Gonzalez, Luz; Li, Wenjun; San Martino, Silvina
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

24/10/2013

24/10/2013

2012

Resumo

We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. (C) 2011 Elsevier By. All rights reserved.

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil

Consejo Investigaciones de la Universidad Nacional de Tucuman (CIUNT)

Consejo de Investigaciones de la Universidad Nacional de Tucuman (CIUNT)

Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina

Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina

National Institutes of Health, USA

National Institutes of Health, USA [NIH-PHS-R01-HD36848, R01-HL071828-02]

Identificador

STATISTICS & PROBABILITY LETTERS, AMSTERDAM, v. 82, n. 2, supl. 1, Part 3, pp. 332-339, FEB, 2012

0167-7152

http://www.producao.usp.br/handle/BDPI/35971

10.1016/j.spl.2011.10.013

http://dx.doi.org/10.1016/j.spl.2011.10.013

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

AMSTERDAM

Relação

STATISTICS & PROBABILITY LETTERS

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #FINITE POPULATION #HETEROSKEDASTICITY #SUPERPOPULATION #UNBIASEDNESS #MIXED-MODEL #STATISTICS & PROBABILITY
Tipo

article

original article

publishedVersion