14 resultados para Cu2

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter beta-domain of the Neisseria gonorrhoeae IgA protease precursor (IgA beta), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgA beta gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb2+, Zn2+, Cu2+, Cd2+, Mn2+, and Ni2+ ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing contamination of aquatic environments motivates studies on the interactions among natural dissolved organic matter, metals, and the biota. This investigation focused on the organic exudates of the toxic cyanobacteria Cylindrospermopsis raciborskii as a Cu carrier through a three-level aquatic trophic chain (bacteria, protozoa, and copepod). The effects of bacteria activity and growth on the metal-organic complexes were evaluated through changes in free Cu2+ ions, total dissolved, and total particulate Cu. To be sure that the added copper would be complexed to the exudates, its complexing properties were previously determined. The cyanobacteria exudate-Cu complexes were furnished to bacteria that were further used as a food source to the protozoan Paramercium caudatum. This was then furnished as food to the copepod Mesocyclops sp. The results showed that, in general, the cyanobacterial exudates decreased Cu bioavailability and toxicity to the first trophic level (bacteria), but because the heterotrophic bacteria accumulated Cu, they were responsible for the transference for the otherwise low availability metal form. Both the bacteria and protozoan organisms accumulated Cu, but no metal accumulation was detected in the copepods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glasses containing metallic nanoparticles are promising materials for technological applications in optics and photonics. Although several methods are available to generate nanoparticles in glass, only femtosecond lasers allow controlling it three-dimensionally. In this direction, the present work investigates the generation of copper nanoparticles on the surface and in the bulk of a borosilicate glass by fs-laser irradiation. We verified the formation of copper nanoparticles, after heat treatment, by UV-Vis absorption, transmission electron microscopy and electron diffraction. A preferential growth of copper nanoparticles was observed in the bottom of the irradiated region, which was attributed to self-focusing in the glass. (c) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of a low-cost benchtop time-domain NMR (TD-NMR) spectrometer to monitor copper electrodeposition in situ is presented. The measurements are based on the strong linear correlation between the concentration of paramagnetic ions and the transverse relaxation rates (R-2) of the solvent protons Two electrochemical NMR (EC-NMR) cells were constructed and applied to monitor the Cu2+ concentration during the electrodeposition reaction. The results show that TD-NMR relaxometry using the Carr-Purcell-Meiboom-Gill pulse sequence can be a very fast, simple, and efficient technique to monitor, in real time, the variation in the Cu2+ concentration during an electrodeposition reaction. This methodology can also be applied to monitor the electrodeposition of other paramagnetic ions, such as Ni2+ and Cr3+, which are commonly used in electroplating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH center dot radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schiff base ligand: N,N'-bis(1-phenylethylidene)ethane-1,2-diamine (L), was derived from acetophenone and ethylenediamine by condensation and its complexes (1-5) were prepared with Pb2+, Ni2+, Co2+, Cu2+ and Cd2+ metal ions. Their structures were characterized by FAB-MS, IR spectra, elemental analyses and molar conductance. The octahedral geometry of the complexes was proposed by electronic spectra and magnetic moment data. The conductivity data showed that the complexes have non-electrolytic nature. The complexes (1-5) have higher in vitro antimicrobial activity than the Schiff base ligand (L). In the nuclease activity, the complexes cleave DNA as compared to control DNA in the presence of H2O2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a new, promising nanotechnological approach for hydrometallurgy based on recyclable, chemically functionalized superparamagnetic nanoparticles. In this process, the metal ions (e.g. Cu2+) are captured by the nanoparticles and confined at the electrode surface by means of an external magnet. Due to the pre-concentration effect the electrodeposition process is greatly improved, yielding the pure metal in a much shorter time in comparison with the conventional electrodeposition process. After the electrolysis, the magnetic nanoparticles are ready to return to the process. The proposed strategy can advantageously be incorporated in hydrometallurgy, reducing the number of steps associated with complexation, organic solvent extraction, metal release and diffusional electroprocessing, leading to a more sustainable technology. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The novel coumarin-based 'turn-on' fluorescent probe (E)-3-(2,5-dimethoxybenzylideneamino)-7-hydroxy-2H-chromen-2-one (MGM) was designed, synthesized, and characterized. This compound shows high selectivity for Cu+2, combined with a large fluorescence enhancement upon binding to Cu2+. Benesi-Hildebrand and Job plots demonstrate that the stoichiometry of the Cu+2 complex formed is 2:1. Preliminary studies employing epifluorescence microscopy demonstrated that Cu+2 could be imaged in human neuroblastoma SH-SY5Y cells treated with MGM. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the potentially detrimental effects of copper and elevated aquatic CO2 (hypercarbia), alone or in combination, on pacu, Piaractus mesopotamicus. Fish were exposed for 48 h to control (no copper addition in normocarbia), to 400 mu g Cu2+L-1, to hypercarbic (1% CO2; PCO2=6.9 mm Hg) water and to 400 mu g Cu2+L-1+ hypercarbia. In liver the single factors caused an increase in lipid hydroperoxide concentration that was not observed when the factors were combined. Copper exposure elicited increased hepatic superoxide dismutase activity, irrespective of aquatic CO2 level. On the other hand, the effects of copper on hepatic glutathione peroxidase activity were dependent on water CO2 levels. The two stressors combined did not affect hepatic catalase activity. Hypercarbic water caused a decline in plasma glucose concentration, but this was not observed when hypercarbia was combined with copper exposure. Copper caused a decrease in branchial Na+/K+-ATPase activity that was independent of water CO2 level. Copper caused an increase in branchial metallothionein concentration that was independent of water CO2 level. Thus, branchial metallothionein and Na+/K+-ATPase were effective biomarkers of copper exposure that were not affected by water CO2 level. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous extracts from wood biotreated with the white-rot fungus Ceriporiopsis subvermispora were evaluated for their Fe3+- and Cu2+-reducing activities and their anti- or prooxidant properties in Fenton-like reactions to decolorize the recalcitrant dye Azure B. The decolorization of Azure B was strongly inhibited in the presence of 10% (v/v) wood extracts. Only 0.1% (v/v)-diluted extracts provided some enhancement of the Azure B decolorization. The iron-containing reactions decolorized more Azure B and consumed substantially more H2O2 than the reactions containing copper. This study demonstrates that water-soluble wood phenols exert anti- or prooxidant effects that depend on their concentration in the reactions and on the type of cation, Fe3+ or Cu2+, used to convert H2O2 to OH radicals. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports the isolation and biochemical characterization of two different serine proteases from Bothrops pirajai snake venom, thus providing a comparative analysis of the enzymes. The isolation process consisted of three consecutive chromatographic steps (Sephacryl S-200, Benzamidine Sepharose and C2/C18), resulting in two serine proteases, named BpirSP27 and BpirSP41 after their molecular masses by mass spectrometry (27,121 and 40,639 Da, respectively). Estimation by SDS-PAGE under denaturing conditions showed that, when deglycosylated with PNGase F, BpirSP27 and BpirSP41 had their molecular masses reduced by approximately 15 and 42%, respectively. Both are acidic enzymes, with pI of approximately 4.7 for BpirSP27 and 3.7 for BpirSP41, and their N-terminal amino acid sequences showed 57% identity to each other, with high similarity to the sequences of other snake venom serine proteases (SVSPs). The enzymes showed different actions on bovine fibrinogen, with BpirSP27 acting preferentially on the B beta chain and BpirSP41 on both A alpha and B beta chains. The two serine proteases were also able to degrade fibrin and blood clots in vitro depending on the doses and incubation periods, with higher results for BpirSP41. Both enzymes coagulated the human plasma in a dose-dependent manner, and BpirSP41 showed a higher coagulant potential, with minimum coagulant dose (MCD) of similar to 3.5 mu g versus 20 mu g for BpirSP27. The enzymes were capable of hydrolyzing different chromogenic substrates, including S-2238 for thrombin-like enzymes, but only BpirSP27 acted on the substrate S-2251 for plasmin. They also showed high stability against variations of temperature and pH, but their activities were significantly reduced after preincubation with Cu2+ ion and specific serine protease inhibitors. In addition. BpirSP27 induced aggregation of washed platelets to a greater extent than BpirSP41. The results showed significant structural and functional differences between B. pirajai serine proteases, providing interesting insights into the structure-function relationship of SVSPs. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.