952 resultados para Personalized learning
em Queensland University of Technology - ePrints Archive
Resumo:
We propose to design a Custom Learning System that responds to the unique needs and potentials of individual students, regardless of their location, abilities, attitudes, and circumstances. This project is intentionally provocative and future-looking but it is not unrealistic or unfeasible. We propose that by combining complex learning databases with a learner’s personal data, we could provide all students with a personal, customizable, and flexible education. This paper presents the initial research undertaken for this project of which the main challenges were to broadly map the complex web of data available, to identify what logic models are required to make the data meaningful for learning, and to translate this knowledge into simple and easy-to-use interfaces. The ultimate outcome of this research will be a series of candidate user interfaces and a broad system logic model for a new smart system for personalized learning. This project is student-centered, not techno-centric, aiming to deliver innovative solutions for learners and schools. It is deliberately future-looking, allowing us to ask questions that take us beyond the limitations of today to motivate new demands on technology.
Resumo:
A group of Australian researchers and designers have been working on ways to imagine, demonstrate and accelerate the use of ICT that extend learning relationships and environments to include the classroom, home and local community. These learning projects aim to transform how students identify and interact with learning, subject areas, teachers, other students, family, organisations and more broadly how learning tools can create connections that permeate students' life worlds now and in the future.---------- It is our intention that such demonstrators must - Be simple, flexible, scalable and adaptive - Result in increased confidence in the use of ICT for both students and teachers - Offer opportunities for personalized learning - Promote new and effective learning partnerships between students, teachers and families. - Extend the learning experience to include other environments both local and virtual. - Inspire further innovation - Provide solutions to current limitations---------- Presenting Innovation in Practice - Innovative ICT projects currently being used by students in schools, at home and in the community - Stories of use from teacher, student, and other stakeholder perspectives - Lessons learnt so far: a design perspective - Surprising and inspiring opportunities
Resumo:
The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.
Resumo:
Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.
Resumo:
It is a big challenge to acquire correct user profiles for personalized text classification since users may be unsure in providing their interests. Traditional approaches to user profiling adopt machine learning (ML) to automatically discover classification knowledge from explicit user feedback in describing personal interests. However, the accuracy of ML-based methods cannot be significantly improved in many cases due to the term independence assumption and uncertainties associated with them. This paper presents a novel relevance feedback approach for personalized text classification. It basically applies data mining to discover knowledge from relevant and non-relevant text and constraints specific knowledge by reasoning rules to eliminate some conflicting information. We also developed a Dempster-Shafer (DS) approach as the means to utilise the specific knowledge to build high-quality data models for classification. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics support that the proposed technique achieves encouraging performance in comparing with the state-of-the-art relevance feedback models.
Resumo:
This presentation presents a blended learning model that provides greater opportunity for learning to be self-managed and personalized.
Resumo:
Due to the explosive growth of the Web, the domain of Web personalization has gained great momentum both in the research and commercial areas. One of the most popular web personalization systems is recommender systems. In recommender systems choosing user information that can be used to profile users is very crucial for user profiling. In Web 2.0, one facility that can help users organize Web resources of their interest is user tagging systems. Exploring user tagging behavior provides a promising way for understanding users’ information needs since tags are given directly by users. However, free and relatively uncontrolled vocabulary makes the user self-defined tags lack of standardization and semantic ambiguity. Also, the relationships among tags need to be explored since there are rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach for learning tag ontology based on the widely used lexical database WordNet for capturing the semantics and the structural relationships of tags. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. To personalize further, clustering of users is performed to generate a more accurate ontology for a particular group of users. In order to evaluate the usefulness of the tag ontology, we use the tag ontology in a pilot tag recommendation experiment for improving the recommendation performance by exploiting the semantic information in the tag ontology. The initial result shows that the personalized information has improved the accuracy of the tag recommendation.