168 resultados para Intercultural education - Science teaching
em Queensland University of Technology - ePrints Archive
Resumo:
"New global contexts are presenting new challenges and new possibilities for young children and those around them. Climate change, armed conflict and poverty combine with new frontiers of discovery in science and technology to create a paradoxical picture of both threat and opportunity for our world and our children. On the one hand, children are experiencing unprecedented patterns of disparity and inequity; yet, on the other hand, they have seemingly limitless possibilities to engage with new technologies and social processes. Seismic shifts such as these are inviting new questions about the conditions that young children need to learn and thrive. Diversity in the Early Years: Intercultural Learning and Teaching explores significant aspects of working with children and adults from diverse backgrounds. It is a valuable resource for teaching early childhood pre-service teachers to raise awareness about issues of diversity - whether diversity of culture, language, education and/or gender - and for helping them to develop their own pedagogical approaches to working with diverse populations."--Publisher website
Resumo:
Historical vignettes are interesting short stories which encapsulate a brief period of scientific history. They can be useful tools for teaching the nature of science, demonstrating the practices of science and making science fun. Historical vignettes illustrate the role of people and social processes in science. In this paper I describe my experience with writing and presenting an historical vignette during a Biology unit. Included is a copy of the vignette and I have identified some possible improvements that might lead to better outcomes. This may be helpful for other teachers who wish to try this strategy for themselves.
Resumo:
Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.
Resumo:
This chapter profiles research that has explored the role of affect in the teaching of science in Australia particularly on primary or elementary science education. Affect is a complex set of characteristics that relate to the interactions between an individual’s knowledge and emotional responses to a stimulus. Thus, there are many dimensions and theoretical frameworks that inform our understanding of how and why people behave in particular ways.
Resumo:
The purpose of this research is to examine School Based Youth Health Nurses experience of partnerships for health education and team teaching. The School Based Youth Health Nurse Program is a contemporary model of school nursing in Queensland, Australia. The role of the School Based Youth Health Nurse consists of individual health consultations and health promotion. This research analyses a subset of qualitative data collected for a larger project about the experience of school based youth health nursing. The Health Promoting Schools model is used as a deductive framework. The findings reveal five subthemes across the three areas of the Health Promoting Schools approach. There are two subthemes within the curriculum, teaching and learning area; We were on the same page so to speak and I can go and do my reports or whatever. There are two sub-themes within the partnerships and services area; I had a beautiful science teacher who was just delightful and really just wanted to do things in partnerships and It’s all airy fairy arty farty stuff that’s not important. There is one theme in the school organisation, ethos and environment area; I just don’t know how well the top of these organisations communicate with the bottom of those organisations. Successful partnerships for health education and team teaching between school nurses and teachers are based on personal relationships based on rapport which lead to trust and reciprocity. Partnerships are limited by teachers understanding of the role of the school nurse and engagement with school nurses in the classroom. Administrative support from the top down is fundamental.
Resumo:
Problems can occur in mentoring relationships if there is a “lack of mentoring skills on the part of the mentor” (Soutter, Kerr - Roubicek & Smith, 2000, p. 6), which includes the effectiveness of mentor’s personal attributes. There is little Australian research that analyses primary teachers’ personal attributes for mentoring; hence this study aims to examine preservice teachers’ perceptions of their mentors’ personal attributes. Specifically, this study focuses on mentors’ personal attributes in relation to their mentoring of primary science teaching....
Resumo:
Introduction There are concerns about the science performance of Australian primary school students (Good rum, Hackling & Rennie, 2001), which requires a “major set of initiatives that focus on teacher beliefs and practices in the teaching and learning of science” (Sharpley, Tytler & Conley, 2000, p. 1). The science education community is calling for a “new approach” to science education in American schools, with an approach where a “mentor models, then coaches, then scaffolds, and then gradually fades scaffolding” (Barab & Hay, 2001, pp. 74, 90). The mentor, as modeller of practice, appears to be a key factor for enhancing science teaching, which may assist towards implementing science education reform
Resumo:
Rapidly changing economic, social, and environmental conditions have created a need for urban and regional planning practitioners who are resilient, innovative, and able to cope with the increasingly complex and cosmopolitan nature of major metropolitan areas. This need should be reflected in planning education that allows students to experience a diverse range of approaches to problems and challenges, and that exposes students to the diverse array of perspectives on planning issues. This paper investigates the outcomes of a collaborative regional planning exercise organised jointly by planning academics from both Queensland University of Technology and the International Islamic University of Malaysia, and involving planning students from both universities. The regional planning exercise consisted of a regional appraisal and report topics of the area under investigation, Klang Valley – Kuala Lumpur, Malaysia. It culminated with the presentation of regional development strategies for the area, with a field trip to Malaysia being the cornerstone of the project. The collaborative exercise involved a series of workshops and seminars organised locally, in which both Australian and Malaysian planning students participated, as well as meetings with local and federal planning officials, and also a forum for Young Planners of Australian and Malaysian Planning Institutes. The experience attempted to bridge the teaching of theoretical concepts of regional planning and development and the regional, more professional knowledge of planning practice, as it relates to specific political, institutional and cultural contexts. A survey of participating students, from both Queensland University of Technology and the International Islamic University of Malaysia, highlights the benefits of such project in terms of leaning experience and exposure to different cultural contexts.
Resumo:
In this paper you will be introduced to a number of principles which can be used to inform good teaching practice and rigorous curriculum design. Principles relate to: * Application of a common sequence of events for how learners learn; * Accommodating different learning styles; * Adopting a purposeful approach to teaching and learning; * Using assessment as a central driving force in the curriculum and as an organising structure leading to coherence of teaching and learning approach; and * The increasing emphasis that is being placed on the development of generic graduate competencies over and above discipline content knowledge. The principles are particularly significant in relation to adult learning. The paper will use three specific applications as illustrations to help you to learn how these principles can be applied. The illustrations are taken from a second year subject in supercomputing that uses scientific case studies. The subject has been developed (with support from Silicon Graphics Inc. and Intel) to be taught entirely via the Internet.
Resumo:
There are several good reasons why Earth and Space Science should be a part of any science curriculum. Nearly everything we do each day is connected in some way to the Earth: to its land, oceans, atmosphere, plants and animals. By 2025, eight billion people will live on Earth. If we are to continue extracting resources to maintain a high quality of life, then it is important that our children are scientifically literate in a way that allows them to exploit the Earth’s resources in a sustainable way. People who understand how earth systems work can make informed decisions and may be able to help resolve issues surrounding clean water, urban planning and development, global climate change and the use and management of natural resources.
Resumo:
Early Childhood Education (ECE) has a long history of building foundations for children to achieve their full potential, enabling parents to participate in the economy while children are cared for, addressing poverty and disadvantage, and building individual, community and societal resources. In so doing, ECE has developed a set of cultural practices and ways of knowing that shape the field and the people who work within it. ECE, consequently, is frequently described as unique and special (Moss, 2006; Penn, 2011). This works to define and distinguish the field while, simultaneously, insulating it from other contexts, professions, and ideas. Recognising this dualism illuminates some of the risks and challenges of operating in an insular and isolated fashion. In the 21st century, there are new challenges for children, families and societies to which ECE must respond if it is to continue to be relevant. One major issue is how ECE contributes to transition towards more sustainable ways of living. Addressing this contemporary social problem is one from which Early Childhood teacher education has been largely absent (Davis & Elliott, 2014), despite the well recognised but often ignored role of education in contributing to sustainability. Because of its complexity, sustainability is sometimes referred to as a ‘wicked problem’ (Rittel & Webber, 1973; Australian Public Service Commission, 2007) requiring alternatives to ‘business as usual’ problem solving approaches. In this chapter, we propose that addressing such problems alongside disciplines other than Education enables the Early Childhood profession to have its eyes opened to new ways of thinking about our work, potentially liberating us from the limitations of our “unique” and idiosyncratic professional cultures. In our chapter, we focus on understandings of culture and diversity, looking to broaden these by exploring the different ‘cultures’ of the specialist fields of ECE and Design (in this project, we worked with students studying Architecture, Industrial Design, Landscape Architecture and Interior Design). We define culture not as it is typically represented, i.e. in relation to ideas and customs of particular ethnic and language groups, but to the ideas and practices of people working in different disciplines and professions. We assert that different specialisms have their own ‘cultural’ practices. Further, we propose that this kind of theoretical work helps us to reconsider ways in which ECE might be reframed and broadened to meet new challenges such as sustainability and as yet unknown future challenges and possibilities. We explore these matters by turning to preservice Early Childhood teacher education (in Australia) as a context in which traditional views of culture and diversity might be reconstructed. We are looking to push our specialist knowledge boundaries and to extend both preservice teachers and academics beyond their comfort zones by engaging in innovative interdisciplinary learning and teaching. We describe a case study of preservice Early Childhood teachers and designers working in collaborative teams, intersecting with a ‘real-world’ business partner. The joint learning task was the design of an early learning centre based on sustainable design principles and in which early Education for Sustainability (EfS) would be embedded Data were collected via focus group and individual interviews with students in ECE and Design. Our findings suggest that interdisciplinary teaching and learning holds considerable potential in dismantling taken-for-granted cultural practices, such that professional roles and identities might be reimagined and reconfigured. We conclude the chapter with provocations challenging the ways in which culture and diversity in the field of ECE might be reconsidered within teacher education.
Resumo:
Primary science education is a concern around the world and quality mentoring within schools can develop preservice teachers’ practices. A five-factor model for mentoring has been identified, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback. Final-year preservice teachers (mentees, n=211) from three Turkish universities were administered a previously validated instrument to gather perceptions of their mentoring in primary science teaching. ANOVA indicated that each of these five factors was statistically significant (p<.001) with mean scale scores ranging from 3.36 to 4.12. Although mentees perceived their mentors to provide evaluation feedback (95%), model classroom management (88%), guide their preparation (96%), and outline the science curriculum (92%), the majority of mentors were perceived not to assist their mentees in 10 of the 34 survey items. Professional development programmes that target the specific needs of these mentors may further enhance mentoring practices for advancing primary science teaching.